On the arithmetic of the BC-system
@article{Connes2011OnTA, title={On the arithmetic of the BC-system}, author={Alain Connes and Caterina Consani}, journal={arXiv: Quantum Algebra}, year={2011} }
For each prime p and each embedding of the multiplicative group of an algebraic closure of F_p as complex roots of unity, we construct a p-adic indecomposable representation of the integral BC-system as additive endomorphisms of the big Witt ring of an algebraic closure of F_p. The obtained representations are the p-adic analogues of the complex, extremal KMS states at zero temperature of the BC-system. The role of the Riemann zeta function, as partition function of the BC-system over complex…
Figures from this paper
19 Citations
The BC-system and L-functions
- Mathematics
- 2011
Abstract In these lectures we survey some relations between L-functions and the BC-system, including new results obtained in collaboration with C. Consani. For each prime p and embedding σ of the…
BC-system, absolute cyclotomy and the quantized calculus
- Mathematics
- 2021
We give a short survey on several developments on the BC-system, the adele class space of the rationals, and on the understanding of the ”zeta sector” of the latter space as the Scaling Site. The new…
On arithmetic models and functoriality of Bost-Connes systems. With an appendix by Sergey Neshveyev
- Mathematics
- 2011
This paper has two parts. In the first part we construct arithmetic models of Bost-Connes systems for arbitrary number fields, which has been an open problem since the seminal work of Bost and Connes…
A p-adic integral for the reciprocal of L-functions
- Mathematics
- 2010
We introduce an analog of part of the Langlands-Shahidi method to the p-adic setting, constructing reciprocals of certain p-adic L-functions using the nonconstant terms of the Fourier expansions of…
Local fields and extraordinary K-theory
- Mathematics
- 2012
We describe integral lifts K(L), indexed by local fields L of degree n = [L:\Q_p], of the extraordinary cohomology theories K(n), and apply the generalized character theory of Hopkins, Kuhn and…
Segal’s Gamma rings and universal arithmetic
- Mathematics
- 2020
Segal's Gamma-rings provide a natural framework for absolute algebraic geometry. We use Almkvist's global Witt construction to explore the relation with J. Borger F1-geometry and compute the Witt…
An essay on the Riemann Hypothesis 3 function fields as done
- Mathematics
- 2015
The Riemann hypothesis is, and will hopefully remain for a long time, a great motivation to uncover and explore new parts of the mathematical world. After reviewing its impact on the development of…
The Riemann Hypothesis for Function Fields: Frobenius Flow and Shift Operators
- Mathematics
- 2014
The Riemann Hypothesis-Peter B. Borwein 2008 The Riemann Hypothesis has become the Holy Grail of mathematics in the century and a half since 1859 when Bernhard Riemann, one of the extraordinary…
An essay on the Riemann Hypothesis
- Mathematics
- 2015
The Riemann hypothesis is, and will hopefully remain for a long time, a great motivation to uncover and explore new parts of the mathematical world. After reviewing its impact on the development of…
An Essay on the Riemann Hypothesis
- MathematicsOpen Problems in Mathematics
- 2016
A framework in which one can transpose many of the ingredients of the Weil proof as reformulated by Mattuck, Tate and Grothendieck is established and it is shown that RH gives a strong motivation to develop algebraic geometry in the emerging world of characteristic one.
References
SHOWING 1-10 OF 93 REFERENCES
The BC-system and L-functions
- Mathematics
- 2011
Abstract In these lectures we survey some relations between L-functions and the BC-system, including new results obtained in collaboration with C. Consani. For each prime p and embedding σ of the…
From monoids to hyperstructures: in search of an absolute arithmetic
- Mathematics
- 2010
We show that the trace formula interpretation of the explicit formulas expresses the counting functionN.q/ of the hypothetical curveC associated to the Riemann zeta function, as an intersection…
Schemes over 𝔽1 and zeta functions
- MathematicsCompositio Mathematica
- 2010
Abstract We determine the real counting function N(q) (q∈[1,∞)) for the hypothetical ‘curve’ $C=\overline {\mathrm {Spec}\,\Z }$ over 𝔽1, whose corresponding zeta function is the complete Riemann…
Characteristic 1 , entropy and the absolute point
- Mathematics
- 1997
We show that the mathematical meaning of working in characteristic one is directly connected to the fields of idempotent analysis and tropical algebraic geometry and we relate this idea to the notion…
Characteristic one, entropy and the absolute point
- Mathematics
- 2009
We show that the mathematical meaning of working in characteristic one is directly connected to the fields of idempotent analysis and tropical algebraic geometry and we relate this idea to the notion…
THE WITT CONSTRUCTION IN CHARACTERISTIC ONE AND QUANTIZATION
- Mathematics
- 2010
We develop the analogue of the Witt construction in characteristic one. We construct a functor from pairs (R; ) of a perfect semi-ring R of characteristic one and an element > 1 of R to real Banach…
On Hecke Algebras
- Mathematics
- 2009
The theory developed in this chapter will allow us to determine the Rouquier blocks of the cyclotomic Hecke algebras of all (irreducible) complex reflection groups in the next chapter.