Corpus ID: 118837651

On the Symmetry Integral

@article{Coppola2010OnTS,
  title={On the Symmetry Integral},
  author={G. Coppola},
  journal={arXiv: Number Theory},
  year={2010}
}
  • G. Coppola
  • Published 2010
  • Mathematics
  • arXiv: Number Theory
  • We give a level one result for the "symmetry integral", say $I_f(N,h)$, of essentially bounded $f:\N \to \R$; i.e., we get a kind of "square-root cancellation" \thinspace bound for the mean-square (in $N 0$ we have $g(n)\ll_{\epsilon} n^{\epsilon}$, and supported in $[1,Q]$, with $Q\ll N$ (so, the exponent of $Q$ relative to $N$, say the level $\lambda:=(\log Q)/(\log N)$ is $\lambda < 1$), where the symmetry sum weights the $f-$values in (almost all, i.e. all but $o(N)$ possible exceptions… CONTINUE READING
    1 Citations
    On the symmetry of primes

    References

    SHOWING 1-8 OF 8 REFERENCES
    On some lower bounds of some symmetry integrals
    • 7
    • PDF
    46
    • Cambridge University Press,
    • 1995
    GTM 74
    • Springer, New York,
    • 2000
    Providence
    • 747
    • PDF