# On the Strong Spherical Shock Waves in a Two-Phase Gas–Particle Medium

@article{Anand2014OnTS, title={On the Strong Spherical Shock Waves in a Two-Phase Gas–Particle Medium}, author={R. K. Anand}, journal={International Journal of Applied and Computational Mathematics}, year={2014}, volume={4}, pages={1-14} }

In this paper, power series solutions for strong spherical shocks of time dependent variable energy propagating in a two-phase gas–particle medium are presented taking into consideration the power series solution technique (Sakurai in J Phys Soc Jpn 8:662–669, 1953; Freeman in J Phys D Appl Phys 2(1):1697–1710, 1968). Assuming the medium to be a mixture of a perfect gas and small solid particles, the power series solutions are obtained in terms of $$M^{-2}$$M-2, where M is the upstream Mach…

## 3 Citations

### Strong Shock Waves in a Dusty-Gas Atmosphere Under Isothermal Conditions: A Power Series Solution

- Materials ScienceInternational Journal of Applied and Computational Mathematics
- 2021

In this paper, a study concerning strong plane and cylindrically symmetric shock waves in a dusty gas atmosphere under isothermal condition has been performed, by taking into account the power series…

### Spherical Shock Waves of Variable Energy in A Radiating Atmosphere

- Physics, Engineering
- 2019

This paper presents power series similarity solutions for spherical shock waves of variable energy propagating in a radiating gas, taking into consideration the Rosseland’s radiative diffusion model.…

### Strong shock waves in a self-gravitating gas: A power series solution

- Physics, Engineering
- 2021

In this article the problem of strong shock wave moving in a self-gravitating gaseous medium is examined for cylin- drically and spherically symmetric flow. It is assumed that the density…

## References

SHOWING 1-10 OF 19 REFERENCES

### Variable-energy Blast Waves Generated by a Piston Moving in a Dusty Gas

- Engineering, Physics
- 2005

This paper presents a similarity solution for strong blast waves of variable energy propagating in a dusty gas. It is assumed that the equilibrium-flow condition is maintained and the variable energy…

### On imploding cylindrical and spherical shock waves in a perfect gas

- MathematicsJournal of Fluid Mechanics
- 2006

The problem of a cylindrically or spherically imploding and reflecting shock wave in a flow initially at rest is studied without the use of the strong-shock approximation. Dimensional arguments are…

### Shock jump relations for a dusty gas atmosphere

- Physics
- 2014

This paper presents simplified forms of jump relations for one dimensional shock waves propagating in a dusty gas. The dusty gas is assumed to be a mixture of a perfect gas and spherically small…

### Strong convergent shock waves near the center of convergence: a power series solution

- Mathematics
- 1988

A Lagrangian formulation of the self-similar convergent shock problem is presented for a quiescent perfect gas of zero pressure. The initial density is either constant or decreasing towards the…

### Disperse Two-Phase Flows, with Applications to Geophysical Problems

- MathematicsPure and Applied Geophysics
- 2014

In this paper, we study the motion of a fluid with several dispersed particles whose concentration is very small (smaller than $$10^{-3}$$10-3), with possible applications to problems coming from…

### The converging shock wave from a spherical or cylindrical piston

- PhysicsJournal of Fluid Mechanics
- 1982

A spherical or cylindrical cavity containing quiescent gas begins to contract at high constant radial speed, driving an axisymmetric shock wave inward to collapse at the centre. We analyse the flow…

### Self-similar spherical shock solution with sustained energy injection

- Physics
- 2002

We present the generalization of the Sedov-Taylor self-similar strong spherical shock solution for the case of a central energy source varying in time, $E=A t^k$, where $A$ and $k$ are constants. The…

### An Existence Theorem for the Point Source Blast Wave Equation

- Mathematics
- 2009

We consider the existence of a solution for the point-source blast wave propagation caused by instantaneous explosion. No similarity solutions of the Euler equations satisfy the conservation law on…

### On the question of universality of imploding shock waves

- Mathematics
- 2008

For the case of initially infinitesimally weak spherically and cylindrically imploding shocks, Ponchaut et al. (J. Fluid Mech., 560:102–122, 2006) recently obtained universal solutions. We study the…