On the Real Part of a Class of Analytic Functions

@inproceedings{Frasin2011OnTR,
  title={On the Real Part of a Class of Analytic Functions},
  author={Basem A. Frasin},
  year={2011}
}
ON THE REAL PART OF A CLASS OF ANALYTIC FUNCTIONS B.A. Frasin Abstract. Let T (β, b), β(β ≥ 0) and b ∈ C denote the class of analytic functions f(z) in the open unit disk which satisfy the condition Re {f ′(z) + βzf ′′(z)} > 1 − |b| . Inclusion relations of functions in the class T (β, b) are given. Lower bounds are also obtained for the n-th partial sums Fn(z) of the Libera integral operator F (z) and the n-th partial sums of f(z). Furthermore, some convolution properties of functions in T… CONTINUE READING

From This Paper

Topics from this paper.
0 Citations
11 References
Similar Papers

References

Publications referenced by this paper.
Showing 1-10 of 11 references

Convolution properties of a class of bounded analytic functions

  • Z. Zhongzhu, S. Owa
  • Bull. Austral. Math. Soc. (1)
  • 1992
Highly Influential
4 Excerpts

Convolution properties of a class of starlike functions

  • R. Singh, S. Singh
  • Proc. Amer. Math. Soc. (1)
  • 1989
Highly Influential
3 Excerpts

New subclasses of the class of close-to-convex functions

  • P. N. Chichra
  • Proc. Amer. Math. Soc. (1)
  • 1977
Highly Influential
3 Excerpts

Remarks of De la Valleé Poussion means and convex conformal maps of the circle

  • G. Pólya, I. J. Schoenberg
  • Pacific J. Math
  • 1958
Highly Influential
5 Excerpts

On the derivatives of a family of analytic functions

  • O. P. Ahuja, M. Jahangiri
  • Math. Japonica
  • 1998
1 Excerpt

On the real part of partial sums of a class of analytic functions

  • M. Jahangiri
  • Math. Japonica
  • 1994
1 Excerpt

A new subclass of analytic functions with negative coefficients, in Current Topics in Analytic Functions Theory (H

  • O. Altintas, Y. Ertekin
  • Srivatava and S. Owa, Eds.),
  • 1992
3 Excerpts

Hadamard products of Schlicht functions and the Pólya-Schoenberg conjecture

  • Ruscheweyh, St, T. Sheil-Small
  • Comment. Math. Helv
  • 1973
3 Excerpts

Similar Papers

Loading similar papers…