On the Number of Periodic Classical Trajectories in a Hamiltonian System

@inproceedings{Niemi1995OnTN,
  title={On the Number of Periodic Classical Trajectories in a Hamiltonian System},
  author={Antti J. Niemi},
  year={1995}
}
Periodic classical trajectories are of fundamental importance both in classical and quantum physics. Here we develop path integral techniques to investigate such trajectories in an arbitrary, not necessarily energy conserving hamiltonian system. In particular, we present a simple derivation of a lower bound for the number of periodic classical trajectories. 

From This Paper

Topics from this paper.

Citations

Publications citing this paper.

References

Publications referenced by this paper.
Showing 1-4 of 4 references

Symplectic Invariants and Hamiltonian Dynamics (Birkhäuser Verlag

H. Hofer, E. Zehnder
1994
View 7 Excerpts
Highly Influenced

Comm

E. Witten
Math. Phys. 118 (1988) 411; for a review, see D. Birmingham, M. Blau, M. Rakowski and G. Thompson, Phys. Repts. 209 • 1991

Phys

T. Eguchi, P. Gilkey, A. Hanson
Repts. 66 • 1980

Paris 261 (1965) 3719; and Uspeki Math

V. I. Arnold, C. R. Acad
Nauk. 18 • 1963
View 3 Excerpts

Similar Papers

Loading similar papers…