On the Number of Distributive Lattices

  title={On the Number of Distributive Lattices},
  author={Marcel Ern{\'e} and Jobst Heitzig and J{\"u}rgen Reinhold},
  journal={Electr. J. Comb.},
We investigate the numbers dk of all (isomorphism classes of) distributive lattices with k elements, or, equivalently, of (unlabeled) posets with k antichains. Closely related and useful for combinatorial identities and inequalities are the numbers vk of vertically indecomposable distributive lattices of size k. We present the explicit values of the numbers dk and vk for k < 50 and prove the following exponential bounds: 1.67 < vk < 2.33 and 1.84 < dk < 2.39 (k > k0). Important tools are (i) an… CONTINUE READING


Publications citing this paper.


Publications referenced by this paper.
Showing 1-9 of 9 references

Analysis 1

K. Königsberger
Springer, Berlin–Heidelberg–New York, 1999. the electronic journal of combinatorics 9 • 2002
View 1 Excerpt

Stege , Combinatorial applications of ordinal sum decompositions

M. Erné, K.
Ars combinatoria • 1992

Lattice Theory

G. Birkhoff
Amer. Math. Soc. Coll. Publ. 25, 3 ed., Providence, R.I. • 1973
View 1 Excerpt

A simple solution to the word problem for lattices

A. Day
Canad. Math. Bull. 13 • 1970
View 1 Excerpt

Diskrete Räume

P. Alexandroff
Math. Sb. (N.S.) 2 • 1937
View 2 Excerpts

Rings of sets

G. Birkhoff
Duke Math. J. 3 • 1937
View 1 Excerpt

Similar Papers

Loading similar papers…