On the Moduli Space of the Schwarzenberger Bundles

  • Paolo Cascini, P. CASCINI
  • Published 2001

Abstract

For any odd n, we prove that the coherent sheaf FA on P C , defined as the cokernel of an injective map f : O⊕2 Pn → OPn(1)⊕(n+2), is Mumford-Takemoto stable if and only if the map f is stable, when considered as a point of the projective space P(Hom(OPn(−1)⊗2,O Pn )∗) under the action of the reductive group SL(2) × SL(n + 2). This proves a particular case… (More)

Topics

Cite this paper

@inproceedings{Cascini2001OnTM, title={On the Moduli Space of the Schwarzenberger Bundles}, author={Paolo Cascini and P. CASCINI}, year={2001} }