On the Global Solutions of the Super-critical 2d Quasi-geostrophic Equation in Besov Spaces

@inproceedings{KeraaniOnTG,
  title={On the Global Solutions of the Super-critical 2d Quasi-geostrophic Equation in Besov Spaces},
  author={Sahbi Keraani}
}
In this paper we study the super-critical 2D dissipative quasi-geostrophic equation. We obtain some regularization effects allowing us to prove global well-posedness result for small initial data lying in critical Besov spaces constructed over Lebesgue spaces L p , with p ∈ [1, ∞]. Local results for arbitrary initial data are also given. 

From This Paper

Figures, tables, results, connections, and topics extracted from this paper.
5 Extracted Citations
11 Extracted References
Similar Papers

Referenced Papers

Publications referenced by this paper.
Showing 1-10 of 11 references

Régularité höldérienne des poches de tourbillon visqueuses

  • N. Ju
  • J . Math . Pures Appl .
  • 2005

A maximum principle applied to quasigeostrophic equations

  • A. Córdoba, D. Córdoba
  • Comm . Math . Phys .
  • 2004

Global wellposedness in the supercritical dissipative quasigeostrophic equations

  • D. Chae, J. Lee
  • Asymptot . Anal .
  • 2004

Hydrodynamics in Besov Spaces

  • M. Vishik
  • Arch . Rational Mech . Anal
  • 2002

Behavior of solutions of 2 D quasigeostrophic equations

  • J. Wu
  • SIAM J . Math . Anal
  • 1999

Chemin , Théorèmes d ’ unicité pour le système de Navier - Stokes tridimensionnel

  • J.-Y.
  • J . Anal . Math .
  • 1999

The Lagrangian averaged Euler equations as the short - time inviscid limit of the Navier - Stokes equations with Besov class data in R 2

  • M. Oliver
  • Commun . Pure Appl . Anal .
  • 1995

Bony , Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires

  • J.-M.
  • 1981

Similar Papers

Loading similar papers…