On the Futaki Invariants of Complete Intersections

  title={On the Futaki Invariants of Complete Intersections},
  author={LU ZHIQIN},
  • Published 1999
In 1983, Futaki [2] introduced his invariants which generalize the obstruction of Kazdan-Warner to prescribe Gauss curvature on S. The Futaki invariants are defined for any compact Kähler manifold with positive first Chern class that has nontrivial holomorphic vector fields. Their vanishing are necessary conditions to the existence of Kähler-Einstein metric on the underlying manifold. Let M be a compact Kähler manifold with positive first Chern class c1(M) > 0. Choosing an arbitrary positive (1… CONTINUE READING
Highly Cited
This paper has 21 citations. REVIEW CITATIONS

From This Paper

Topics from this paper.


Publications referenced by this paper.
Showing 1-8 of 8 references

metrics with positive scalar curvature

  • G. Tian, Kähler-Einstein
  • Invent. Math.130(1997),
  • 1997
Highly Influential
7 Excerpts

Singular set of some Kähler orbifolds

  • T. Jeffres
  • Trans. Amer. Math. Soc
  • 1997
Highly Influential
4 Excerpts

Kähler-Einstein metrics and the generalized Futaki invariant

  • W. Ding, G. Tian
  • I vent
  • 1992
Highly Influential
6 Excerpts

Kähler-Einstein metrics and K-stability

  • Z. Wu
  • Ph.D. thesis,
  • 1998
1 Excerpt

Einstein-Kähler forms, Futaki invariants and convex geometry on toric Fano varieties

  • T. Mabuchi
  • Osaka J. Math
  • 1987
1 Excerpt

An obstruction to the existence of Einstein Kähler metrics

  • A. Futaki
  • Invent
  • 1983
1 Excerpt

inSéminaire sur les singularitiés des surfaces (Centre de Mathématiques de l’École Polytechnique, Palaiseau, 1976–1977), Lecture Notes in Math.777

  • H. Pinkham, “Singularitiés de Klein
  • 1980
1 Excerpt

Principles of Algebraic Geometry

  • P. Griffiths, J. Harris
  • Pure Appl. Math.,
  • 1978

Similar Papers

Loading similar papers…