On the F2-linear relations of Mersenne Twister pseudorandom number generators

@article{Harase2014OnTF,
  title={On the F2-linear relations of Mersenne Twister pseudorandom number generators},
  author={Shin Harase},
  journal={Math. Comput. Simul.},
  year={2014},
  volume={100},
  pages={103-113}
}
  • Shin Harase
  • Published 2014
  • Mathematics, Computer Science
  • Math. Comput. Simul.
  • Sequence generators obtained by linear recursions over the two-element field F 2 , i.e., F 2 -linear generators, are widely used as pseudorandom number generators. For example, the Mersenne Twister MT19937 is one of the most successful applications. An advantage of such generators is that we can assess them quickly by using theoretical criteria, such as the dimension of equidistribution with v -bit accuracy. To compute these dimensions, several polynomial-time lattice reduction algorithms have… CONTINUE READING
    15 Citations
    Conversion of Mersenne Twister to double-precision floating-point numbers
    • Shin Harase
    • Mathematics, Computer Science
    • Math. Comput. Simul.
    • 2019
    • 5
    • PDF
    It is high time we let go of the Mersenne Twister
    • S. Vigna
    • Mathematics, Computer Science
    • ArXiv
    • 2019
    • 1
    • PDF
    Scrambled Linear Pseudorandom Number Generators
    • 20
    • Highly Influenced
    • PDF
    Implementing 64-bit Maximally Equidistributed Mersenne Twisters
    • PDF
    Implementing 64-bit Maximally Equidistributed F2-Linear Generators with Mersenne Prime Period
    • 2
    • PDF

    References

    SHOWING 1-10 OF 46 REFERENCES
    Fast lattice reduction for F2-linear pseudorandom number generators
    • 7
    • PDF
    Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator
    • 5,071
    • Highly Influential
    • PDF
    An efficient lattice reduction method for F2-linear pseudorandom number generators using Mulders and Storjohann algorithm
    • Shin Harase
    • Mathematics, Computer Science
    • J. Comput. Appl. Math.
    • 2011
    • 8
    • PDF
    The k-distribution of generalized feedback shift register pseudorandom numbers
    • 99
    • PDF
    F2-Linear Random Number Generators
    • 26
    Maximally equidistributed pseudorandom number generators via linear output transformations
    • Shin Harase
    • Mathematics, Computer Science
    • Math. Comput. Simul.
    • 2009
    • 7
    On the use of reducible polynomials as random number generators
    • 44
    • PDF
    An Asymptotically Random Tausworthe Sequence
    • 82