On the Existence of Viable Solutions for a Class of Second Order Differential Inclusions

@inproceedings{Cernea2007OnTE,
  title={On the Existence of Viable Solutions for a Class of Second Order Differential Inclusions},
  author={Aurelian Cernea},
  year={2007}
}
We prove the existence of viable solutions to the Cauchy problem x′′ ∈ F (x, x′), x(0) = x0, x′(0) = y0, where F is a set-valued map defined on a locally compact set M ⊂ R, contained in the Fréchet subdifferential of a φ-convex function of order two. 

From This Paper

Topics from this paper.

References

Publications referenced by this paper.
Showing 1-8 of 8 references

On a class of evolution equations without convexity

  • T. Cardinali, G. Colombo, F. Papalini, M. Tosques
  • Nonlinear Anal
  • 1996
Highly Influential
3 Excerpts

Viability theorems for higher-order differential inclusions

  • L. Marco, J. A. Murillo
  • Set-valued Anal
  • 1998
2 Excerpts

Evolution equations with lack of convexity

  • M. Degiovanni, A. Marino, M. Tosques
  • Nonlinear Anal
  • 1995
2 Excerpts

Nonconvex second order differential inclusions with memory, Set-valued Anal

  • T.X.D. Ha, M. Marques
  • 1995
1 Excerpt

Quasi-autonomus parabolic evolution equations associated with a class of non linear operators

  • M. Tosques
  • Ricerche Mat
  • 1989

Théoreme de viabilité pour inclusions differentielles du second order

  • B. Haddad
  • Israel J . Math .
  • 1987

Théoreme de viabilité pour inclusions differentielles du second order, Israel

  • B. Cornet, B. Haddad
  • J. Math
  • 1987
2 Excerpts

Second order viability problems for differential inclusions

  • A. Auslender, J. Mechler
  • J. Math. Anal. Appl
  • 1984
2 Excerpts

Similar Papers

Loading similar papers…