On the Distribution in Residue Classes of Integers with a Fixed Sum of Digits

@article{Mauduit2005OnTD,
  title={On the Distribution in Residue Classes of Integers with a Fixed Sum of Digits},
  author={C. Mauduit and C. Pomerance and A. S{\'a}rk{\"o}zy},
  journal={The Ramanujan Journal},
  year={2005},
  volume={9},
  pages={45-62}
}
We give an asymptotic formula for the distribution of those integers n in a residue class, such that n has a fixed sum of base-g digits, with some uniformity over the choice of the modulus and g. We then use this formula to solve the problem of I. Niven of giving an asymptotic formula for the distribution of those integers n divisible by the sum of their base-g digits. Our results also allow us to give a stronger form of a result of M. Olivier dealing with the distribution of integers with a… Expand
18 Citations
Numbers with fixed sum of digits in linear recurrent number systems
  • 2
  • Highly Influenced
  • PDF
WEYL SUMS OVER INTEGERS WITH LINEAR DIGIT RESTRICTIONS
  • PDF
Counting the number of twin Niven numbers
  • 1
  • Highly Influenced
ADDITIVE BASES AND NIVEN NUMBERS
  • PDF
Minimal Niven numbers
  • Highly Influenced
Sur les entiers ellipséphiques: somme des chiffres et répartition dans les classes de congruence
  • K. Aloui
  • Mathematics, Computer Science
  • Period. Math. Hung.
  • 2015
  • 4
  • PDF
Remarks on a Sequence of Minimal Niven Numbers
  • 4
  • PDF
ON “VERY PALINDROMIC” SEQUENCES
  • 3
  • PDF
...
1
2
...

References

SHOWING 1-10 OF 14 REFERENCES
A PARTIAL ASYMPTOTIC FORMULA FOR THE NIVEN NUMBERS
  • 4
  • Highly Influential
  • PDF
On the Natural Density of the Niven Numbers
  • 14
  • PDF
Fonctions g-additives et formule asymptotique pour la propriété (n, f(n)) = q
  • 1
  • Highly Influential
  • PDF
On a theorem of Besicov̆ıtch: values of arithmetic functions that divide their arguments
  • Indian J. Math. 32
  • 1990
Chebyshev's inequality and natural density
  • 13
  • PDF
Application of a Generalized Fibonacci Sequence
  • 4
Mathematical Discovery and Niven Numbers.
  • 13
...
1
2
...