On the Computation of Modular Polynomials for Elliptic Curves

@inproceedings{BlakeOnTC,
  title={On the Computation of Modular Polynomials for Elliptic Curves},
  author={Ian F. Blake and J{\'a}nos A. Csirik and Michael Rubinstein and Gadiel Seroussi}
}
An essential aspect of the use of elliptic curves over a finite field in public key cryptosystems is to determine the precise order of the additive group of rational points of the curve. All known effective point-counting algorithms for such elliptic curves require the computation of modular polynomials. Several approaches to the computation of modular polynomials and variants of them have been considered in the literature. The purpose of this work is to give a unified treatment of these… CONTINUE READING
1 Citations
15 References
Similar Papers

Citations

Publications citing this paper.

References

Publications referenced by this paper.
Showing 1-10 of 15 references

Elliptic Curves in Cryptography

  • I. F. Blake, G. Seroussi, N. P. Smart
  • 1999
Highly Influential
4 Excerpts

Counting the points on an elliptic curve on a low memory device

  • J. A. Csirik
  • Preprint, October,
  • 1998
Highly Influential
5 Excerpts

Elkies . Elliptic and modular curves over finite fields and related computational issues

  • D. N.
  • 1998

Calcul du nombre de points sur une courbe elliptique dans un corps fini: aspects algorithmiques

  • F. Morain
  • J. Théorie des Nombres de Bordeaux,
  • 1995
2 Excerpts

Ein Algorithmus zur Bestimmung der Punktzahl elliptischer Kurven über endlichen Körpern der Charakteristik grösser drei

  • V. Müller
  • Ph.D. Thesis, Universität des Saarlandes,
  • 1995
2 Excerpts

Advanced Topics in the Arithmetic of Elliptic Curves

  • J. H. Silverman
  • SpringerVerlag, GTM 151,
  • 1994

Similar Papers

Loading similar papers…