On the Coefficients of the Laplacian Characteristic Polynomial of Trees

@inproceedings{Gutman2003OnTC,
  title={On the Coefficients of the Laplacian Characteristic Polynomial of Trees},
  author={Ivan Gutman and Ljiljana Pavlovic},
  year={2003}
}
k=0 (−1)n−k ck(T ) λk . Then, as well known, c0(T ) = 0 and c1(T ) = n . If T differs from the star (Sn) and the path (Pn), which requires n ≥ 5 , then c2(Sn) < c2(T ) < c2(Pn) and c3(Sn) < c3(T ) < c3(Pn) . If n = 4 , then c3(Sn) = c3(Pn) . AMS Mathematics Subject Classification (2000): 05C05, 05C12, 05C50 

From This Paper

Topics from this paper.

References

Publications referenced by this paper.
Showing 1-10 of 10 references

N

  • C. S. Oliveira
  • M. M. de Abreu, S. Jurkewicz, The characteristic…
  • 2002
1 Excerpt

Wiener index of trees: theory and applications

  • A. A. Dobrynin, R. Entringer, I. Gutman
  • Acta Appl. Math. 66
  • 2001
1 Excerpt

Spectra of graphs — theory and application

  • D. Cvetković, M. Doob, H. Sachs
  • Barth, Heidelberg
  • 1995

Eigenvalues

  • B. Mohar
  • diameter, and mean distance in graphs , Graphs…
  • 1991
1 Excerpt

An edge version of the matrix–tree theorem and the Wiener index

  • R. Merris
  • Lin. Multilin. Algebra 25
  • 1989
1 Excerpt

Distance in graphs

  • R. C. Entringer, D. E. Jackson, D. A. Snyder
  • Czech. Math. J. 26
  • 1976
1 Excerpt

Similar Papers

Loading similar papers…