On the Clifford-Fourier Transform

@inproceedings{Bie2011OnTC,
  title={On the Clifford-Fourier Transform},
  author={Hendrik De Bie and Yuan Xu},
  year={2011}
}
For functions that take values in the Clifford algebra, we study the Clifford–Fourier transform on Rm defined with a kernel function K(x, y) := e iπ 2 Γy e−i〈x,y〉, replacing the kernel ei〈x,y〉 of the ordinary Fourier transform, where Γy := − ∑ j<k ejek(yj∂yk − yk∂yj ). An explicit formula of K(x, y) is derived, which can be further simplified to a finite sum of Bessel functions when m is even. The closed formula of the kernel allows us to study the Clifford–Fourier transform and prove the… CONTINUE READING

From This Paper

Topics from this paper.

References

Publications referenced by this paper.
SHOWING 1-10 OF 18 REFERENCES

The Fourier transform in Clifford analysis.

  • F. Brackx, N. De Schepper, F. Sommen
  • Advances in Imaging and Electron Physics
  • 2009
2 Excerpts

On the integrability of a representation of sl(2,R).

  • S. Ben Saı̈d
  • Journal of Functional Analysis 250, no
  • 2007

The Dunkl transform.

  • M.F.E. de Jeu
  • Inventiones Mathematicae 113,
  • 1993
1 Excerpt

Clifford Algebra and Spinor-valued Functions

  • R. Delanghe, F. Sommen, V. Souček
  • Mathematics and its Applications
  • 1992
1 Excerpt

Similar Papers

Loading similar papers…