On the Busemann Area in Minkowski Spaces

@inproceedings{Schneider2000OnTB,
  title={On the Busemann Area in Minkowski Spaces},
  author={Rolf Schneider},
  year={2000}
}
Among the different notions of area in a Minkowski space, those due to Busemann and to Holmes and Thompson, respectively, have found particular attention. In recent papers it was shown that the Holmes-Thompson area is integral-geometric, in the sense that certain integral-geometric formulas of Croftontype, well known for the area in Euclidean space, can be carried over to Minkowski spaces and the Holmes-Thompson area. In the present paper, the Busemann area is investigated from this point of… CONTINUE READING

From This Paper

Topics from this paper.

References

Publications referenced by this paper.
Showing 1-10 of 12 references

Convex Bodies: the Brunn-Minkowski Theory

R. Schneider
Encyclopedia Math. Appl., • 1993
View 6 Excerpts
Highly Influenced

Cube slices, pictorial triangles, and probability

G. D. Chakerian, D. Logothetti
Math. Mag • 1991
View 3 Excerpts
Highly Influenced

Stochastische Geometrie

R. Schneider, W. Weil
B.G. Teubner, Stuttgart-Leipzig • 2000
View 1 Excerpt

Fourier transforms and the Holmes-Thompson volume of Finsler manifolds

J. C. Álvarez Paiva, E. Fernandes
Internat. Math. Res. Notices • 1999
View 1 Excerpt

Integral geometry in Minkowski spaces

R. Schneider, J. A. Wieacker
Adv. Math • 1997
View 3 Excerpts

Intrinsic volumes in Minkowski spaces

R. Schneider
Rend . Circ . Mat . Palermo , Ser . II , Suppl . • 1997

Intrinsic volumes in Minkowski spaces. Rend

R. Schneider
1997
View 1 Excerpt

Minkowski Geometry

A. C. Thompson
Encyclopedia Math . Appl . • 1996

Similar Papers

Loading similar papers…