On the Asymptotic Isoperimetric Constants for Riemann Surfaces and Graphs

@inproceedings{Brooks2003OnTA,
  title={On the Asymptotic Isoperimetric Constants for Riemann Surfaces and Graphs},
  author={Robert Brooks and Andrzej Zuk},
  year={2003}
}
We study the behavior of the Cheeger isoperimetric constant on infinite families of graphs and Riemann surfaces, and its relationship to the first eigenvalue λ1 of the Laplacian. We adapt probabilistic arguments of Bollobás to the setting of Riemann surfaces, and then show that Cheeger constants of the modular surfaces are uniformly bounded from above away from the maximum value. We extend this result to the class of Ramanujan surfaces, defined below. 
7 Citations
19 References
Similar Papers

References

Publications referenced by this paper.
Showing 1-10 of 19 references

R

  • A. Lubotzky
  • Phillips & P. Sarnak, Ramanujan graphs…
  • 1988
Highly Influential
10 Excerpts

On the estimation of Fourier coefficients of modular forms

  • A. Selberg
  • ‘Theory of Numbers’ (A.L. Whiteman, ed.) Proc…
  • 1965
Highly Influential
9 Excerpts

Random Graphs (2nd edition)

  • B. Bollobás
  • Cambridge Studies in Advanced Mathematics, 73…
  • 2001

Platonic surfaces

  • R. Brooks
  • Comm. Math. Helv. 74
  • 1999
1 Excerpt

Instability of the wet X soap film

  • K. Brakke, F. Morgan
  • J. Geom. Anal
  • 1998
2 Excerpts

Répartition asymptotique des valeurs propres de l’opérateur de Hecke Tp

  • J.-P. Serre
  • J. Amer. Math. Soc. 10(1)
  • 1997

Spectral Graph Theory

  • F.R.K. Chung
  • CBMS Regional Conference Series in Mathematics…
  • 1997
1 Excerpt

Similar Papers

Loading similar papers…