• Corpus ID: 119705610

On the (Non)Equivalence of the Schrodinger and Heisenberg Pictures of Quantum Mechanics

  title={On the (Non)Equivalence of the Schrodinger and Heisenberg Pictures of Quantum Mechanics},
  author={Maurice A. de Gosson},
  journal={arXiv: Quantum Physics},
  • M. D. Gosson
  • Published 27 April 2014
  • Physics
  • arXiv: Quantum Physics
The aim of this short Note is to show that the Schrodinger and Heisenberg pictures of quantum mechanics cannot be equivalent unless one uses a quantization rule clearly stated by Born and Jordan in their famous 1925 paper. This rule is sufficient and necessary to ensure energy conservation in Heisenberg's matrix mechanics. It follows, in particular, that Schrodinger and Heisenberg mechanics yield different theories if one quantizes the Hamiltonian using the Weyl prescription. 



A brief history of the mathematical equivalence between the two quantum mechanics

The aim of this paper is to give a brief account of the development of the mathematical equivalence of quantum mechanics. In order to deal with atomic systems, Heisenberg developed matrix mechanics

Unambiguous Quantization from the Maximum Classical Correspondence that Is Self-consistent: The Slightly Stronger Canonical Commutation Rule Dirac Missed

Dirac’s identification of the quantum analog of the Poisson bracket with the commutator is reviewed, as is the threat of self-inconsistent overdetermination of the quantization of classical dynamical

Symplectic covariance properties for Shubin and Born–Jordan pseudo-differential operators

Among all classes of pseudo-differential operators only the Weyl operators enjoy the property of symplectic covariance with respect to conjugation by elements of the metaplectic group. In this paper

Preferred quantization rules: Born–Jordan versus Weyl. The pseudo-differential point of view

There has recently been evidence for replacing the usual Weyl quantization procedure by the older and much less known Born–Jordan rule. In this paper we discuss this quantization procedure in detail

Zur Quantenmechanik

ZusammenfassungDie kürzlich von Heisenberg gegebenen Ansätze werden (zunächst für Systeme von einem Freiheitsgrad) zu einer systematischen Theorie der Quantenmechanik entwickelt. Das mathematische

Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen

In der Arbeit soll versucht werden, Grundlagen zu gewinnen fur eine quantentheoretische Mechanik, die ausschlieslich auf Beziehungen zwischen prinzipiell beobachtbaren Grosen basiert ist.

Quantenmechanik und Gruppentheorie

ZusammenfassungEinleitung und Zusammenfassung. — I. Teil. Bedeutung der Repräsentation von physikalischen Größen durch Hermitesche Formen. § 1. Mathematische Grundbegriffe, die Hermiteschen Formen

Zur Quantenmechanik. II

Die aus Heisenbergs Ansatzen in Teil I dieser Arbeit entwickelte Quantenmechanik wird auf Systeme von beliebig vielen Freiheitsgraden ausgedehnt. Die Storungstheorie wird fur nicht entartete und eine