On saturation-strip model of a permeable crack in a piezoelectric ceramic

Abstract

The saturation-strip model for piezoelectric crack is re-examined in a permeable environment to analyze fracture toughness of a piezoelectric ceramic. In this study, a permeable crack is modeled as a vanishing thin but finite rectangular slit with surface charge deposited along crack surfaces. This permeable saturation crack model reveals that there exists a possible leaky mode for electrical field, which allows applied electric field passing through the dielectric medium inside a crack. By taking into account the leaky mode effect, a first-order approximated solution is obtained with respect to slit height, h0, in the analysis of electrical and mechanical fields in the vicinity of a permeable crack tip. The permeable saturation crack model presented here also considers the effect of charge distribution on crack surfaces, which may be caused by any possible charge-discharge process in the dielectric medium inside the crack. A closed form solution is obtained for the permeable crack perpendicular to the poling direction under both mechanical as well electrical loads. Both local and global energy release rates are calculated. Remarkably, the global energy release rate for a permeable crack has an expression,

Extracted Key Phrases

1 Figure or Table

Cite this paper

@inproceedings{Li2003OnSM, title={On saturation-strip model of a permeable crack in a piezoelectric ceramic}, author={Shouwei Li}, year={2003} }