On ring generated by Chern 2-forms on %plane1D;54A;%plane1D;543;n/B

@article{Shapiro1998OnRG,
  title={On ring generated by Chern 2-forms on \%plane1D;54A;\%plane1D;543;n/B},
  author={B. Shapiro and M. Shapiro},
  journal={Comptes Rendus De L Academie Des Sciences Serie I-mathematique},
  year={1998},
  volume={326},
  pages={75-80}
}
  • B. Shapiro, M. Shapiro
  • Published 1998
  • Mathematics
  • Comptes Rendus De L Academie Des Sciences Serie I-mathematique
Abstract In this short Note we give an explicit presentation of the ring A n generated by the curvature 2-forms of the standard Hermitian linear bundles over %plane1D;54A;%plane1D;543; n / B as the quotient of the polynomial ring. The difference between %plane1D;49C; n and %plane1D;54A;%plane1D;543; n / B reflects the fact that %plane1D;54A;%plane1D;543; n / B is not a symmetric space. This question was raised by V.I. Arnol'd in [1]. 
Ordinary and Generalized Circulation Algebras for Regular Matroids
"K-theoretic" analog of Postnikov-Shapiro algebra distinguishes graphs
AROUND POWER IDEALS