On perturbations of matrix pencils with real spectra. II

@article{Bhatia1996OnPO,
  title={On perturbations of matrix pencils with real spectra. II},
  author={Rajendra Bhatia and Ren-Cang Li},
  journal={Math. Comput.},
  year={1996},
  volume={65},
  pages={637-645}
}
This paper continues earlier studies by Bhatia and Li on eigenvalue perturbation theory for diagonalizable matrix pencils having real spectra. A unifying framework for creating crucial perturbation equations is developed. With the help of a recent result on generalized commutators involving unitary matrices, new and much sharper bounds are obtained. 

From This Paper

Topics from this paper.

References

Publications referenced by this paper.
Showing 1-10 of 15 references

On perturbations of matrix pencils with real spectra

R. Bhatia, R.-C. Li
II, Mathematics of Computation • 1996
View 5 Excerpts
Highly Influenced

Matrix analysis, Graduate Texts in Mathematics, vol

R. Bhatia
1996

The perturbation bounds of latent values of a class of matrix polynomials

Xing-guo Liu
Math . Numer . Sinica • 1993

A note on Stewart ’ s theorem for definite matrix pairs

J.-G. Sun
Linear Algebra Appl . • 1990

Davis , A bound for the spectral variation of a unitary operator ,

Ch.
Linear Multilinear Algebra • 1987

A bound for the spectral variation of a unitary operator, Linear and Multilinear Algebra

R. Bhatia, C. Davis
MR 85b:15020 • 1984
View 1 Excerpt

Weyl , Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen ( mit einer Anwendung auf die Theorie der Hohlraumstrahlung )

H.
Mathematische Annalen • 1984

Perturbation theorems for the generalized eigenvalue problem, Linear Algebra and Its Applications

L. Elsner, J.-G. Sun
MR 84f:15012 • 1982

Invariant subspaces and generalized invariant subspaces . ( I ) , ( II ) , Math . Nu

Ji-guang Sun
Math . Numer . Sinica • 1980

Perturbation bounds for the definite generalized eigenvalue problem

G. W. Stewart
Linear Algebra Appl • 1979

Similar Papers

Loading similar papers…