On laplace continued fraction for the normal integral

@article{Lee1992OnLC,
  title={On laplace continued fraction for the normal integral},
  author={Chu-in Charles Lee},
  journal={Annals of the Institute of Statistical Mathematics},
  year={1992},
  volume={44},
  pages={107-120}
}
The Laplace continued fraction is derived through a power series. It provides both upper bounds and lower bounds of the normal tail probability % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiqbfA6agzaaraaaaa!3DC0!\[\bar \Phi\](x), it is… CONTINUE READING

Tables from this paper.

References

Publications referenced by this paper.
SHOWING 1-10 OF 21 REFERENCES

An Inequality for Mill's Ratio

VIEW 7 EXCERPTS
HIGHLY INFLUENTIAL

Elementary inequalities for Mills' ratio, Rep

Y. Komatu
  • Statist. Appl. Res. Un. Japan. Sci. Engrs., 4, 69 70.
  • 1955
VIEW 1 EXCERPT
HIGHLY INFLUENTIAL

Analytic Inequalities, Springer, New York

D. S. MitrinoviS
  • 1970

An Introduction to Probability Theory and Its Applications, Vol

W. Feller
  • 1, 3rd ed., Wiley, New York.
  • 1968
VIEW 1 EXCERPT

Inequalities for Mills' ratio~ Rep

A. V. Boyd
  • Statist. Appl. Res. Un. Japan. Sci. Engrs., 6, 44-46.
  • 1959