# On equivalence of unbounded metric spaces at infinity

@inproceedings{Bilet2021OnEO, title={On equivalence of unbounded metric spaces at infinity}, author={Viktoriia Bilet and Oleksiy Dovgoshey}, year={2021} }

Let (X, d) be an unbounded metric space. To investigate the asymptotic behavior of (X, d) at infinity, one can consider a sequence of rescaling metric spaces (X, 1 rn d) generated by given sequence (rn)n∈N of positive reals with rn → ∞. Metric spaces that are limit points of the sequence (X, 1 rn d)n∈N will be called pretangent spaces to (X, d) at infinity. We found the necessary and sufficient conditions under which two given unbounded subspaces of (X, d) have the same pretangent spaces at…

## One Citation

Completeness, Closedness and Metric Reflections of Pseudometric Spaces

- Mathematics
- 2022

. It is well-known that a metric space ( X, d ) is complete iﬀ the set X is closed in every metric superspace of ( X, d ) . For a given pseudometric space ( Y, ρ ) , we describe the maximal class CEC…

## References

SHOWING 1-10 OF 20 REFERENCES

Combinatorial characterization of pseudometrics

- MathematicsActa Mathematica Hungarica
- 2020

Let X, Y be sets and let $$\Phi, \Psi$$ Φ , Ψ be mappings with the domains X 2 and Y 2 respectively. We say that $$\Phi$$ Φ is combinatorially similar to $$\Psi$$ Ψ if there are bijections $$f \colon…

An introduction to asymptotic geometry

- Mathematics
- 2012

This survey article presents the fundamentals of large-scale geometry of hyperbolic metric spaces and their boundaries. It is based on the book [S. Buyalo and V. Schroeder, Elements of asymptotic…

Betweenness relation and isometric imbeddings of metric spaces

- Mathematics
- 2009

We give an elementary proof of the classical Menger result according to which any metric space X that consists of more than four points is isometrically imbedded into $$ \mathbb{R} $$ if every…

Elements of Asymptotic Geometry

- Mathematics
- 2007

Asymptotic geometry is the study of metric spaces from a large scale point of view, where the local geometry does not come into play. An important class of model spaces are the hyperbolic spaces (in…

Topologies on Closed and Closed Convex Sets

- Mathematics
- 1993

Preface. 1. Preliminaries. 2. Weak Topologies determined by Distance Functionals. 3. The Attouch--Wets and Hausdorff Metric Topologies. 4. Gap and Excess Functionals and Weak Topologies. 5. The Fell…

Wijsman convergence in the hyperspace of a metric space

- Computer Science
- 1985

An improved interface circuit for use between variable voltage analog sensors which are measuring physical parameters and a microprocessor which is processing the data relating to such parameters.…

Lectures on coarse geometry

- Mathematics
- 2003

Metric spaces Coarse spaces Growth and amenability Translation algebras Coarse algebraic topology Coarse negative curvature Limits of metric spaces Rigidity Asymptotic dimension Groupoids and coarse…