On embeddings into toric prevarieties
@inproceedings{Hausen2000OnEI, title={On embeddings into toric prevarieties}, author={Juergen Hausen and Stefan Schroeer}, year={2000} }
We give examples of complete normal surfaces that are not em- beddable into simplicial toric prevarieties nor toric prevarieties of ane inter- section.
4 Citations
Tropicalization of toric prevarieties
- Mathematics
- 2021
The homogeneous spectrum of a multigraded finitely generated algebra (in the sense of Brenner-Schröer) always admits an embedding into a toric variety that is not necessarily separated, a so-called…
Limits of tropicalizations
- Mathematics
- 2012
We give general criteria under which the limit of a system of tropicalizations of a scheme over a nonarchimedean field is homeomorphic to the analytification of the scheme. As an application, we show…
Equivariant Embeddings into Smooth Toric Varieties
- MathematicsCanadian Journal of Mathematics
- 2002
Abstract We characterize embeddability of algebraic varieties into smooth toric varieties and prevarieties. Our embedding results hold also in an equivariant context and thus generalize a well-known…
ON WłODARCZYK'S EMBEDDING THEOREM
- Mathematics
- 2000
We prove the following version of Wlodarczyk's Embedding Theorem: Every normal complex algebraic -variety Y admits an equivariant closed embedding into a toric prevariety X on which acts as a…
References
SHOWING 1-10 OF 34 REFERENCES
On non-projective normal surfaces
- Mathematics
- 1999
Abstract:In this note we construct examples of non-projective normal proper algebraic surfaces and discuss the somewhat pathological behaviour of their Neron–Severi group. Our surfaces are birational…
Ample subvarieties of algebraic varieties
- Mathematics
- 1970
Ample divisors.- Affine open subsets.- Generalization to higher codimensions.- The grothendieck-lefschetz theorems.- Formal-rational functions along a subvariety.- Algebraic geometry and analytic…
A characterization of semiampleness and contractions of relative curves
- Mathematics
- 2000
A line bundle with a base-point-free multiple is called semiample. I give a cohomological characterization of semiample line bundles. The result is a common generalization of the Fujita-Zariski…
ON WłODARCZYK'S EMBEDDING THEOREM
- Mathematics
- 2000
We prove the following version of Wlodarczyk's Embedding Theorem: Every normal complex algebraic -variety Y admits an equivariant closed embedding into a toric prevariety X on which acts as a…
Toric Prevarieties and Subtorus Actions
- Mathematics
- 1999
AbstractDropping separatedness in the definition of a toric variety, one obtains the more general notion of a toric prevariety. Toric prevarieties occur as ambient spaces in algebraic geometry and,…
Picard Groups of compact toric Varieties and combinatorial Classes of Fans
- Mathematics
- 1993
We consider the question what can be said about the rank of the Picard group Pic Xσ of a compact toric variety Xσ if we know only the combinatorial type of the associated fan σ. We establish upper…
Éléments de géométrie algébrique : II. Étude globale élémentaire de quelques classes de morphismes
- Mathematics
- 1961
© Publications mathématiques de l’I.H.É.S., 1961, tous droits réservés. L’accès aux archives de la revue « Publications mathématiques de l’I.H.É.S. » (http://…
Éléments de géométrie algébrique : I. Le langage des schémas
- Mathematics
- 1960
© Publications mathématiques de l’I.H.É.S., 1960, tous droits réservés. L’accès aux archives de la revue « Publications mathématiques de l’I.H.É.S. » (http://…
A Bia lynicki–Birula: Categorical quotients
- J. Algebra
- 2001
Bia lynicki – Birula : Categorical quotients
- J . Algebra
- 2001