On eigenvalues of the kernel ${1\over 2}+\lfloor {1\over xy}\rfloor - {1\over xy}$ ($0
@article{Watt2018OnEO, title={On eigenvalues of the kernel \$\{1\over 2\}+\lfloor \{1\over xy\}\rfloor - \{1\over xy\}\$ (\$0}, author={Nigel Watt}, journal={arXiv: Number Theory}, year={2018} }
We show that the kernel $K(x,y)={1\over 2}+\lfloor {1\over xy}\rfloor -{1\over xy}$ ($0<x,y\leq 1$) has infinitely many positive eigenvalues and infinitely many negative eigenvalues. Our interest in this kernel is motivated by the appearance of the quadratic form $\sum_{m,n\leq N} K\bigl( {m\over N} , {n\over N}\bigr) \mu(m)\mu(n)$ in an indentity involving the Mertens function.
One Citation
On eigenfunctions of the kernel $\frac{1}{2} + \lfloor \frac{1}{xy} \rfloor - \frac{1}{xy}$
- Mathematics
- 2019
The integral kernel $K(x,y) := \frac{1}{2} + \lfloor \frac{1}{xy} \rfloor - \frac{1}{xy}$ ($0<x,y\leq 1$) has connections with the Riemann zeta-function and a (recently observed) connection with the…
References
SHOWING 1-8 OF 8 REFERENCES
Integral Equations, Dover Publications
- New York
- 1985
The Riemann zeta-function: theory and applications, Dover Publications, Inc., Mineola, New York
- 1985
Statistical Theory (2nd edition)
- 1968
Titchmarsh (revised by D.R. Heath-Brown), The Theory of the Riemann Zetafunction
- 1986
Clark (editors)
- NIST Handbook of Mathematical Functions, Cambridge University Press, New York
- 2010