On diamond surface properties and interactions with neurons.


In this paper we report about the role the diamond surface morphology and atomic termination plays in the survival and viability of neuronal cells, which represent an appropriate experimental model for the development of cell-based biosensors. The samples we have investigated were both CVD homoepitaxial diamond films and nanocrystalline diamond layers deposited on quartz substrates. Different surface terminations were induced through exposure to atomic hydrogen and to intense UV irradiation. GT1-7 cells, a neuronal line of hypothalamic origin, were plated directly onto the diamond surfaces without exogenous adhesion molecules, in order to correlate the surface topography and chemistry to cell growth and viability. The cell density on nanocrystalline diamonds after 48 h from plating was approximately 55% of the control on plastic dishes, whatever is the atomic termination of the surface, whereas the performances of homoepitaxial samples in terms of cell growth depend on surface termination and were significantly lower, 30%.

DOI: 10.1140/epje/i2009-10520-9

8 Figures and Tables

Cite this paper

@article{Ariano2009OnDS, title={On diamond surface properties and interactions with neurons.}, author={Paolo Ariano and O Budnyk and Simona Dalmazzo and Davide Lovisolo and Ch Manfredotti and Paola Rivolo and Ettore Vittone}, journal={The European physical journal. E, Soft matter}, year={2009}, volume={30 2}, pages={149-56} }