On derivatives of graphon parameters

@article{Lovsz2017OnDO,
  title={On derivatives of graphon parameters},
  author={L{\'a}szl{\'o} Mikl{\'o}s Lov{\'a}sz and Yufei Zhao},
  journal={J. Comb. Theory, Ser. A},
  year={2017},
  volume={145},
  pages={364-368}
}
  • László Miklós Lovász, Yufei Zhao
  • Published 2017
  • Mathematics, Computer Science
  • J. Comb. Theory, Ser. A
  • We give a short elementary proof of the main theorem in the paper "Differential calculus on graphon space" by Diao et al. (JCTA 2015), which says that any graphon parameters whose $(N+1)$-th derivatives all vanish must be a linear combination of homomorphism densities $t(H, -)$ over graphs $H$ on at most $N$ edges. 

    Topics from this paper.

    References

    Publications referenced by this paper.
    SHOWING 1-6 OF 6 REFERENCES

    Differential calculus on graphon space

    VIEW 5 EXCERPTS
    HIGHLY INFLUENTIAL

    Convergent sequences of dense graphs

    • C. Borgs, J. T. Chayes, L. Lovász, V. T. Sós, K. Vesztergombi
    • I. Subgraph frequencies, metric properties and testing, Adv. Math. 219
    • 2008
    VIEW 1 EXCERPT