Corpus ID: 224802986

On counting cuspidal automorphic representations for $\mathrm{GSp}(4)$

@article{Roy2020OnCC,
  title={On counting cuspidal automorphic representations for \$\mathrm\{GSp\}(4)\$},
  author={M. Roy and R. Schmidt and Shaoyun Yi},
  journal={arXiv: Number Theory},
  year={2020}
}
  • M. Roy, R. Schmidt, Shaoyun Yi
  • Published 2020
  • Mathematics
  • arXiv: Number Theory
  • We find the number $s_k(p,\Omega)$ of cuspidal automorphic representations of $\mathrm{GSp}(4,\mathbb{A}_{\mathbb{Q}})$ with trivial central character such that the archimedean component is a holomorphic discrete series representation of weight $k\ge 3$, and the non-archimedean component at $p$ is an Iwahori-spherical representation of type $\Omega$ and unramified otherwise. Using the automorphic Plancherel density theorem, we show how a limit version of our formula for $s_k(p,\Omega… CONTINUE READING

    Tables from this paper

    References

    SHOWING 1-10 OF 32 REFERENCES
    Automorphic Plancherel density theorem
    • 54
    • Highly Influential
    • PDF
    Multiplicity formulas for discrete series representations in L2(Γ\Sp(2,R))
    • 5
    • PDF
    Siegel modular forms and representations
    • 110
    • PDF
    On Relations of Dimensions of Automorphic Forms of $Sp(2, R)$ and Its Compact Twist $Sp(2)$ (II)
    • 32
    • PDF
    Arthur's multiplicity formula for GSp$_4$ and restriction to Sp$_4$
    • 19
    • PDF
    On Modular Forms for the Paramodular Group
    • 27
    • PDF
    Dimension formulas for spaces of vector-valued Siegel cusp forms of degree two
    • 18
    • PDF