On counting cuspidal automorphic representations for $\mathrm{GSp}(4)$
@article{Roy2020OnCC, title={On counting cuspidal automorphic representations for \$\mathrm\{GSp\}(4)\$}, author={M. Roy and R. Schmidt and Shaoyun Yi}, journal={arXiv: Number Theory}, year={2020} }
We find the number $s_k(p,\Omega)$ of cuspidal automorphic representations of $\mathrm{GSp}(4,\mathbb{A}_{\mathbb{Q}})$ with trivial central character such that the archimedean component is a holomorphic discrete series representation of weight $k\ge 3$, and the non-archimedean component at $p$ is an Iwahori-spherical representation of type $\Omega$ and unramified otherwise. Using the automorphic Plancherel density theorem, we show how a limit version of our formula for $s_k(p,\Omega… CONTINUE READING
References
SHOWING 1-10 OF 32 REFERENCES