On convergence rates of averages of weakly dependent random variables

@inproceedings{Lin1993OnCR,
  title={On convergence rates of averages of weakly dependent random variables},
  author={Gwo Dong Lin},
  year={1993}
}
Let {;Xn}[infinity]n=1 be a sequence of random variabls on a probability space, r > 1 and the delayed sum Sm,n = [summation operator]m+nk=m+1Xk, where m [greater-or-equal, slanted] 0 and n [greater-or-equal, slanted] 1. Further, let the function [varrho](n) = supm [greater-or-equal, slanted] 0[short parallel](1/n)Sm,n[short parallel]rr satisfy [summation operator][infinity]n=1[varrho](n)/n ;[varrho](2k) + [summation operator]kj=1((1 + cr)/2r)j-1[varrho](2k-j)} [reverse not equivalent] vk = o(k… CONTINUE READING