# On compactly generated torsion pairs and the classification of co--structures for commutative noetherian rings

@article{ovek2015OnCG, title={On compactly generated torsion pairs and the classification of co--structures for commutative noetherian rings}, author={J. {\vS}ťov{\'i}{\vc}ek and David Posp{\'i}{\vs}il}, journal={Transactions of the American Mathematical Society}, year={2015}, volume={368}, pages={6325-6361} }

We classify compactly generated co-t-structures on the derived category of a commutative noetherian ring. In order to accomplish that, we develop a theory for compactly generated Hom-orthogonal pairs (also known as torsion pairs in the literature) in triangulated categories that resembles Bousfield localization theory. Finally, we show that the category of perfect complexes over a connected commutative noetherian ring admits only the trivial co-t-structures and (de)suspensions of the canonical… Expand

#### 26 Citations

Compactly generated t-structures in the derived category of a commutative ring

- Mathematics
- 2018

We classify all compactly generated t-structures in the unbounded derived category of an arbitrary commutative ring, generalizing the result of Alonso Tarrío et al. (J Algebra 324(3):313–346, 2010 )… Expand

Torsion pairs in silting theory

- Mathematics
- 2016

In the setting of compactly generated triangulated categories, we show that the heart of a (co)silting t-structure is a Grothendieck category if and only if the (co)silting object satisfies a purity… Expand

On Torsion Theories, Weight and t-Structures in Triangulated Categories

- Mathematics
- 2019

We study triangulated categories and torsion theories in them, and compare two definitions of torsion theories in this work. The most important types of torsion theories—weight structures and… Expand

Smashing localizations of rings of weak global dimension at most one

- Mathematics
- 2017

Abstract We show for a ring R of weak global dimension at most one that there is a bijection between the smashing subcategories of its derived category and the equivalence classes of homological… Expand

Gorenstein homological algebra and universal coefficient theorems

- Mathematics
- 2015

We study criteria for a ring—or more generally, for a small category—to be Gorenstein and for a module over it to be of finite projective dimension. The goal is to unify the universal coefficient… Expand

Exact model categories, approximation theory, and cohomology of quasi-coherent sheaves

- Mathematics
- 2013

Our aim is to give a fairly complete account on the construction of compatible model structures on exact categories and symmetric monoidal exact categories, in some cases generalizing previously… Expand

Tilting theory via stable homotopy theory

- Mathematics
- 2018

We show that certain tilting results for quivers are formal consequences of stability, and as such are part of a formal calculus available in any abstract stable homotopy theory. Thus these results… Expand

$t$-Structures on stable derivators and Grothendieck hearts

- Mathematics
- 2017

We prove that given any strong, stable derivator and a $t$-structure on its base triangulated category $\cal D$, the $t$-structure canonically lifts to all the (coherent) diagram categories and each… Expand

$t$-Structures with Grothendieck hearts via functor categories

- Mathematics
- 2020

We study when the heart of a t-structure in a triangulated category $\mathcal{D}$ with coproducts is AB5 or a Grothendieck category. If $\mathcal{D}$ satisfies Brown representability, a t-structure… Expand

Silting objects.

- Mathematics
- 2018

We give an overview of recent developments in silting theory. After an introduction on torsion pairs in triangulated categories, we discuss and compare different notions of silting and explain the… Expand

#### References

SHOWING 1-10 OF 73 REFERENCES

On t-structures and torsion theories induced by compact objects

- Mathematics
- 2000

Abstract First, we show that a compact object C in a triangulated category, which satisfies suitable conditions, induces a t-structure. Second, in an abelian category we show that a complex P · of… Expand

Compactly generated t-structures on the derived category of a Noetherian ring

- Mathematics
- 2010

Abstract We study t -structures on D ( R ) the derived category of modules over a commutative Noetherian ring R generated by complexes in D fg − ( R ) . We prove that they are exactly the compactly… Expand

Tilting, cotilting, and spectra of commutative noetherian rings

- Mathematics
- 2012

We classify all tilting and cotilting classes over commutative noetherian rings in terms of descending sequences of specialization closed subsets of the Zariski spectrum. Consequently, all resolving… Expand

Generators and representability of functors in commutative and noncommutative geometry

- Mathematics
- 2002

We give a sufficient condition for an Ext-finite triangulated category to be saturated. Saturatedness means that every contravariant cohomological functor of finite type to vector spaces is… Expand

Cotorsion pairs, model category structures, and representation theory

- Mathematics
- 2002

Abstract. We make a general study of Quillen model structures on abelian categories. We show that they are closely related to cotorsion pairs, which were introduced by Salce [Sal79] and have been… Expand

Homological and Homotopical Aspects of Torsion Theories

- Mathematics
- 2007

Introduction Torsion pairs in abelian and triangulated categories Torsion pairs in pretriangulated categories Compactly generated torsion pairs in triangulated categories Hereditary torsion pairs in… Expand

The telescope conjecture for hereditary rings via Ext-orthogonal pairs

- Mathematics
- 2010

Abstract For the module category of a hereditary ring, the Ext-orthogonal pairs of subcategories are studied. For each Ext-orthogonal pair that is generated by a single module, a 5-term exact… Expand

Weight structures and simple dg modules for positive dg algebras

- Mathematics
- 2010

Using techniques due to Dwyer-Greenlees-Iyengar we construct weight structures in triangulated categories generated by compact objects. We apply our result to show that, for a dg category whose… Expand

Models for singularity categories

- Mathematics
- 2012

In this article we construct various models for singularity categories of modules over differential graded rings. The main technique is the connection between abelian model structures, cotorsion… Expand

THE CO-STABILITY MANIFOLD OF A TRIANGULATED CATEGORY

- Mathematics
- Glasgow Mathematical Journal
- 2012

Abstract Stability conditions on triangulated categories were introduced by Bridgeland as a ‘continuous’ generalisation of t-structures. The set of locally-finite stability conditions on a… Expand