On a question of swan in algebraic k-theory

@article{Sharma1973OnAQ,
  title={On a question of swan in algebraic k-theory},
  author={Pramod Kumar Sharma and Jan R. Strooker},
  journal={Annales Scientifiques De L Ecole Normale Superieure},
  year={1973},
  volume={6},
  pages={85-94}
}
© Gauthier-Villars (Éditions scientifiques et médicales Elsevier), 1973, tous droits réservés. L’accès aux archives de la revue « Annales scientifiques de l’É.N.S. » (http://www. elsevier.com/locate/ansens) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. 
6 Citations
Karoubi-Villamayor $K$-theory is not homotopy Quillen theory
A functor F from rings (possibly without identity) to groups or abelian groups is called a homotopy functor if the canonical map F(R) -* F(R[t]) is an isomorphism for every ring R. To each F one may
Algebraic K-theory
One gives a survey of the fundamental methods and results of the algebraic K-theory obtained in the past decade. One presents the basic constructions of the K-theory of rings and of the K-theory of
Purity for flat cohomology.
We establish the flat cohomology version of the Gabber-Thomason purity for etale cohomology: for a complete intersection Noetherian local ring $(R, \mathfrak{m})$ and a commutative, finite, flat

References

SHOWING 1-10 OF 11 REFERENCES
La périodicité de Bott en $K$-théorie générale
© Gauthier-Villars (Éditions scientifiques et médicales Elsevier), 1971, tous droits réservés. L’accès aux archives de la revue « Annales scientifiques de l’É.N.S. » (http://www.
Seminormality and Picard group
© Scuola Normale Superiore, Pisa, 1970, tous droits réservés. L’accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe di Scienze »
On the $K$-theory of Laurent polynomials
The Karoubi-Villamayor K-theory of the ring of Laurent polynomials over a regular ring is computed. It is shown that Milnor's K2 of a ring of Laurent polynomials over a regular ring maps onto K, of
Introduction to algebraic K-theory
Algebraic K-theory describes a branch of algebra that centers about two functors. K0 and K1, which assign to each associative ring ? an abelian group K0? or K1? respectively. Professor Milnor sets
Some relations between higher K-functors
On Mayer-Vietoris functors and algebraic K-theory
Homotopy theory of rings
Algebraic K-theory
Algebraic K-theory (Actes
  • Congres intern, math., Nice, 1970, Gauthier- Villars, Paris, I
  • 1971
...
...