On a Proof of the -conjecture

@inproceedings{Kim2000OnAP,
  title={On a Proof of the -conjecture},
  author={Jin-Hong Kim},
  year={2000}
}
Let X be a smooth, closed, oriented non-spin 4-manifold with even intersection form kE8 ⊕ nH . In this article we show that n ≥ |k| on X . Thus we confirm the 10 8 -conjecture affirmatively. As an application, we also give an estimate of intersection forms of spin coverings of non-spin 4-manifolds with even intersection forms. 

Citations

Publications citing this paper.
Showing 1-2 of 2 extracted citations

References

Publications referenced by this paper.
Showing 1-10 of 10 references

Intersection forms for non-spin four manifolds

  • R. Lee, T.-J. Li
  • PREPRINT
  • 2000
3 Excerpts

Even non-spin manifolds

  • D. Acosta, T. Lawson
  • Spin structures, and duality, L’Enseignement Math…
  • 1997
1 Excerpt

Even nonspin manifolds , Spin c structures , and duality

  • T. Lawson
  • 1997

The Seiberg-Witten equations and applications to the topology of fourmanifolds

  • J. Morgan
  • Princeton University Press
  • 1996
1 Excerpt

Monopole equation and the 11 8 -conjecture

  • M. Furuta
  • PREPRINT
  • 1995
3 Excerpts

Geometry of four-manifolds

  • S. K. Donaldson, P. Kronheimer
  • Oxford University Press
  • 1990
1 Excerpt

An application of gauge theory to four dimensional topology

  • S. K. Donaldson
  • J. Diff. Geom. 18
  • 1983
1 Excerpt

Symmetric bilinear forms

  • J. Milnor, D. Husemoller
  • Springer-Verlag
  • 1973
1 Excerpt

Proof of a conjecture of Whitney

  • W. Massey
  • Pac. J. Math. 31
  • 1969
1 Excerpt

Similar Papers

Loading similar papers…