On Stability of the Chemotactic Dynamics in Bacterial Foraging Optimization Algorithm


Bacterial Foraging Optimization Algorithm (BFOA) attempts to model the individual and group behavior of E.Coli bacteria as a distributed optimization process. Since its inception, BFOA has been finding many important applications in realworld optimization problems from diverse domains of science and engineering. One key step in BFOA is the computational chemotaxis, where a bacterium (which models a candidate solution of the optimization problem) takes steps over the foraging landscape in order to reach regions with high nutrient content (corresponding to higher fitness). The simulated chemotactic movement of a bacterium may be viewed as a guided random walk or a kind of stochastic hill climbing from the viewpoint of optimization theory. In this article, we firstly derive a mathematical model for the chemotactic movements of an artificial bacterium living in continuous time. The stability and convergence-behavior of the said dynamics is then analyzed in the light of Lyapunov stability theorems. The analysis undertaken provides important insights into the search mechanism of BFOA. In addition, it indicates the necessary bounds on the chemotactic step-height parameter that avoids limit-cycles and guarantees convergence of the bacterial dynamics into an optimum. Illustrative examples as well as simulation results have been provided in order to support the analytical treatments.

Extracted Key Phrases

3 Figures and Tables


Citations per Year

53 Citations

Semantic Scholar estimates that this publication has 53 citations based on the available data.

See our FAQ for additional information.

Cite this paper

@inproceedings{Das2008OnSO, title={On Stability of the Chemotactic Dynamics in Bacterial Foraging Optimization Algorithm}, author={Swagatam Das and Sambarta Dasgupta and Arijit Biswas and Ajith Abraham and Amit Konar}, year={2008} }