On Point-Cyclic Resolutions of the 2-(63, 7, 15) Design Associated with PG(5, 2)

@article{Sarmiento2002OnPR,
  title={On Point-Cyclic Resolutions of the 2-(63, 7, 15) Design Associated with PG(5, 2)},
  author={Jumela F. Sarmiento},
  journal={Graphs and Combinatorics},
  year={2002},
  volume={18},
  pages={621-632}
}
A t-ðv; k; kÞ design is a set of v points together with a collection of its k-subsets called blocks so that t points are contained in exactly k blocks. PGðn; qÞ, the n-dimensional projective geometry over GFðqÞ is a 2-ðqn þ qn 1 þ þ qþ 1; q þ qþ 1; qn þ qn 3 þ þ qþ 1Þ design when we take its points as the points of the design and its planes as the blocks of the design. A 2-ðv; k; kÞ design is said to be resolvable if the blocks can be partitioned as F 1⁄4 fR1;R2; . . . ;Rsg, where s 1⁄4 kðv 1… CONTINUE READING

References

Publications referenced by this paper.
Showing 1-10 of 15 references

Cyclically resolvable cyclic steiner 2-systems Sð2; 4; 52Þ

  • C. Lam, Y. Miao, M. Mishima
  • J. Stat. Plann. Inference 95, 245–256
  • 2001

Resolutions of PGð5; 2Þ with point-cyclic automorphism group

  • J. F. Sarmiento
  • J. Comb. Designs 8, 2–14
  • 2000

Possible patterns of cyclic resolutions of the BIB design associated with PGð7; 2Þ

  • T. Hishida, M. Jimbo
  • Congr. Numerantium 131, 179–186
  • 1998

Cyclic resolvability of cyclic Steiner 2-designs

  • M. Genma, M. Mishima, M. Jimbo
  • J. Comb. Des. 5, 177–187
  • 1997

Some types of cyclically resolvable cyclic Steiner 2-designs

  • M. Mishima, M. Jimbo
  • Congr. Numerantium 123, 193–203
  • 1997

GAP: Groups, Algebra and Programming, Lehrstuhl D für Mathematik

  • M Schönert
  • RWTH Aachen
  • 1992

On parallelism of odd-dimensional finite projective spaces

  • F. Wettl
  • Proc. Second Int. Math. Miniconf., Part II…
  • 1991

Atlas of finite groups

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson
  • Oxford: Clarendon Press
  • 1985

Similar Papers

Loading similar papers…