• Corpus ID: 119325058

On Perrin-Riou's exponential map for $(\varphi, \Gamma)$-modules

@article{Riedel2016OnPE,
  title={On Perrin-Riou's exponential map for \$(\varphi, \Gamma)\$-modules},
  author={Andreas Riedel},
  journal={arXiv: Number Theory},
  year={2016}
}
  • Andreas Riedel
  • Published 20 September 2016
  • Mathematics
  • arXiv: Number Theory
Let $K / \mathbb{Q}_p$ be a finite Galois extension and $D$ a $(\varphi, \Gamma)$-module over the Robba-ring $B^{\dagger}_{\textrm{rig}, K}$. We give a generalization of the Bloch-Kato exponential map for $D$ using continuous Galois-cohomology groups $H^i(G_K, W(D))$ for the $B$-pair $W(D)$ associated to $D$. We construct a big exponential map $\Omega_{D,h}$ ($h \in \mathbb{N}$) for cyclotomic extensions of $K$ for $D$ in the style of Perrin-Riou using the theory of Berger's $B$-pairs, which… 

References

SHOWING 1-10 OF 32 REFERENCES

On some modular representations of the Borel subgroup of GL2(Qp)

  • L. Berger
  • Mathematics
    Compositio Mathematica
  • 2009
Abstract Colmez has given a recipe to associate a smooth modular representation Ω(W) of the Borel subgroup of GL2(Qp) to a $\overline {\mathbf {F}}_p$-representation W of $\mathrm {Gal}(\overline

Fontaine''s Rings and p-Adic L-Functions

In the first part, we introduce theory of p-adic analysis for one variable p-adic functions and then use them to construct Kubota-Leopoldt p-adic L-functions. In the second part, we give a

Représentations p-adiques et équations différentielles

Abstract.In this paper, we associate to every p-adic representation V a p-adic differential equation D†rig(V), that is to say a module with a connection over the Robba ring. We do this via the theory

The Grothendieck Festschrift : A Collection of Articles Written in Honor of the 60th Birthday of Alexander Grothendieck

A. Lascoux: Anneau de Grothendieck de la variete de drapeaux S. Lichtenbaum: New Results on Weight-Two Motivic Cohomology G. Lusztig: Symmetric Spaces over a Finite Field Z. Mebkhout: Le theoreme de

Global applications of relative (ϕ,) -modules I

In this paper, given a smooth proper scheme X over a p-adic dvr and a p-power torsionlocal system L on it, we study a family of sheaves associated to the cohomology of local, relative (',)-modules of

Cohomology and Duality for (φ, Γ)-modules over the Robba Ring

Given a p-adic representation of the Galois group of a local field, we show that its Galois cohomology can be computed using the associated étale (φ,Γ)-module over the Robba ring; this is a variant

Construction de (φ,Γ)-modules: représentations p-adiques et B-paires

We study the category of B-pairs (W_e,W_dR^+) where W_e is a free B_cris^{phi=1}-module with a semilinear and continuous action of G_K and where W_dR^+ is a G_K-stable B_dR^+ -lattice in B_dR \otimes

Bloch and Kato's exponential map: three explicit formulas

The purpose of this article is to give formulas for Bloch-Kato's exponential map and its dual for an absolutely crystalline p-adic representation V, in terms of the (phi,Gamma)-module associated to

Représentations p-adiques de groupes p-adiques I : représentations galoisiennes ET(ψ,Γ)-modules

p-adic representations of p-adic groups I : Galois representations and (y>, T)modules) This volume is the first in a series of three dedicated to the p-adic Langlands correspondence for GL2(QP). The

Arithmetic algebraic geometry : lectures given at the 2nd session of the Centro internazionale matematico estivo (C.I.M.E.) held in Trento, Italy, June 24- July 2, 1991

Cycles algebriques de torsion et K-theorie algebrique Cours au C.I.M.E., juin 1991.- Lectures on the approach to Iwasawa theory for Hasse-Weil L-functions via BdR. Part I.- Applications of arithmetic