On Optimal Probabilities in Stochastic Coordinate Descent Methods


We propose and analyze a new parallel coordinate descent method—‘NSync— in which at each iteration a random subset of coordinates is updated, in parallel, allowing for the subsets to be chosen non-uniformly. We derive convergence rates under a strong convexity assumption, and comment on how to assign probabilities to the sets to optimize the bound. The complexity and practical performance of the method can outperform its uniform variant by an order of magnitude. Surprisingly, the strategy of updating a single randomly selected coordinate per iteration—with optimal probabilities—may require less iterations, both in theory and practice, than the strategy of updating all coordinates at every iteration.

DOI: 10.1007/s11590-015-0916-1

Extracted Key Phrases

Citations per Year

Citation Velocity: 15

Averaging 15 citations per year over the last 3 years.

Learn more about how we calculate this metric in our FAQ.

Cite this paper

@article{Richtrik2016OnOP, title={On Optimal Probabilities in Stochastic Coordinate Descent Methods}, author={Peter Richt{\'a}rik and Martin Tak{\'a}c}, journal={Optimization Letters}, year={2016}, volume={10}, pages={1233-1243} }