# On Lieb-Thirring Inequalities for Schrödinger Operators with Virtual Level

@article{Ekholm2006OnLI, title={On Lieb-Thirring Inequalities for Schr{\"o}dinger Operators with Virtual Level}, author={Tomas Ekholm and Rupert L. Frank}, journal={Communications in Mathematical Physics}, year={2006}, volume={264}, pages={725-740} }

We consider the operator H=−Δ−V in L2(ℝd), d≥3. For the moments of its negative eigenvalues we prove the estimate Similar estimates hold for the one-dimensional operator with a Dirichlet condition at the origin and for the two-dimensional Aharonov-Bohm operator.

## 47 Citations

Eigenvalue estimates for the Aharonov-Bohm operator in a domain

- Mathematics
- 2007

We prove semi-classical estimates on moments of eigenvalues of the Aharonov-Bohm operator in bounded two-dimensional domains. Moreover, we present a counterexample to the generalized diamagnetic…

Hardy-Lieb-Thirring inequalities for fractional Schrödinger operators

- Mathematics
- 2006

We show that the Lieb-Thirring inequalities on moments of negative eigenvalues of Schrodinger-like operators remain true, with possibly different constants, when the critical Hardy-weight C │x│^(-2)…

Lieb-Thirring inequalities on the half-line with critical exponent

- Mathematics
- 2006

We consider the operator -d(2)/dr(2) - V in L-2(R+) with Dirichlet boundary condition at the origin. For the moments of its negative eigenvalues we prove the bound [GRAPHICS] for any alpha is an…

Comparison bounds for perturbed Schr\"odinger operators with single-well potentials

- Mathematics
- 2022

. We prove bounds on the sum of the diﬀerences between the eigenvalues of a Schrödinger operator and its perturbation. Our results hold for operators in one dimension with single-well potentials. We…

Remarks on eigenvalue estimates and semigroup domination

- Mathematics
- 2009

We present an overview over recent results concerning semi-classical spectral estimates for magnetic Schroedinger operators. We discuss how the constants in magnetic and non-magnetic eigenvalue…

Equivalence of Sobolev inequalities and Lieb-Thirring inequalities

- Mathematics
- 2010

We show that, under very general definitions of a kinetic energy operator T, the Lieb–Thirring inequalities for sums of eigenvalues of T - V can be derived from the Sobolev inequality appropriate to…

Eigenvalue Bounds for Perturbations of Schrödinger Operators and Jacobi Matrices With Regular Ground States

- Mathematics
- 2007

We prove general comparison theorems for eigenvalues of perturbed Schrödinger operators that allow proof of Lieb–Thirring bounds for suitable non-free Schrödinger operators and Jacobi matrices.

Heat Kernel Estimates for Schrödinger Operators on Exterior Domains with Robin Boundary Conditions

- Mathematics
- 2018

We study Schrödinger operators with Robin boundary conditions on exterior domains in ℝd. We prove sharp point-wise estimates for the associated semigroups which show, in particular, how the boundary…

Fractional Hardy–Lieb–Thirring and Related Inequalities for Interacting Systems

- Mathematics
- 2015

We prove analogues of the Lieb–Thirring and Hardy–Lieb–Thirring inequalities for many-body quantum systems with fractional kinetic operators and homogeneous interaction potentials, where no…

## References

SHOWING 1-10 OF 23 REFERENCES

New estimates on the number of bound states of Schrödinger operators

- Mathematics
- 1987

In this Letter we prove inequalities on the number of bound states of Schrödinger operators by improving the method of Li and Yau relying on heat kernel estimates by Sobolev inequalities. We extend…

Remarks on virtual bound states for semi—bounded operators

- Mathematics
- 1999

We calculate the number of bound states appearing below the spectrum of a semi—bounded operator in the case of a weak, indefinite perturbation. The abstract result generalizes the Birman—Schwinger…

Bounds on the number of bound states for potentials with critical decay at infinity

- Mathematics
- 1990

Let V be a potential whose negative part V− decays like c‖x‖−2 at infinity. If c is not too large, then the Schrodinger operator HV=−Δ+V on Rn, n≥3, has only a finite number of bound states although…

Hardy inequalities for magnetic Dirichlet forms

- Mathematics
- 1999

It is known that the classical Hardy inequality fails in ℝ.We show that under certain non-degeneracy conditions on vector potentials, the Hardy inequality becomes possible for the corresponding…

Trace ideals and their applications

- Mathematics
- 1979

Preliminaries Calkin's theory of operator ideals and symmetrically normed ideals convergence theorems for $\mathcal J_P$ Trace, determinant, and Lidskii's theorem $f(x)g(-i\nabla)$ Fredholm theory…

Introduction to Fourier Analysis on Euclidean Spaces.

- Mathematics
- 1971

The authors present a unified treatment of basic topics that arise in Fourier analysis. Their intention is to illustrate the role played by the structure of Euclidean spaces, particularly the action…

A Family of Optimal Conditions for the Absence of Bound States in a Potential

- Physics
- 1976

We derive the optimal condition , ( ν ) = ί ^ ^ ; ώ | χ | 2 Ρ 3 , ^ ν ( χ ) | Ρ < 1 Ρ r (ρ) for the absence of bound states in a potential. The condition is valid i) for arbitrary V if p > f ; ii)…

Kondrat’ev

- On spectral theory of elliptic operators. Oper. Theory Adv. Appl. 89, Birkhäuser, Basel,
- 1996