On Irreducible Components of Real Exponential Hypersurfaces

@article{Riener2016OnIC,
  title={On Irreducible Components of Real Exponential Hypersurfaces},
  author={C. Riener and Nicolai Vorobjov},
  journal={Arnold Mathematical Journal},
  year={2016},
  volume={3},
  pages={423-443}
}
  • C. Riener, Nicolai Vorobjov
  • Published 2016
  • Mathematics
  • Arnold Mathematical Journal
  • Fix any real algebraic extension $$\mathbb K$$K of the field $$\mathbb Q$$Q of rationals. Polynomials with coefficients from $$\mathbb K$$K in n variables and in n exponential functions are called exponential polynomials over$${\mathbb K}$$K. We study zero sets in $${\mathbb R}^n$$Rn of exponential polynomials over $$\mathbb K$$K, which we call exponential-algebraic sets. Complements of all exponential-algebraic sets in $${\mathbb R}^n$$Rn form a Zariski-type topology on $${\mathbb R}^n$$Rn… CONTINUE READING

    Figures from this paper

    References

    SHOWING 1-10 OF 28 REFERENCES
    Real algebraic geometry
    • 1,716
    • PDF
    Varietes polaires II Multiplicites polaires, sections planes, et conditions de whitney
    • 181
    • Highly Influential
    Complexity of computations with Pfaffian and Noetherian functions
    • 68
    • PDF
    Transcendental Number Theory
    • 702
    Finding irreducible components of some real transcendental varieties
    • 5
    The Complexity of Stratification Computation
    • E. Rannou
    • Computer Science, Mathematics
    • Discret. Comput. Geom.
    • 1998
    • 12
    • PDF
    Graduate Texts in Mathematics
    • 8,093
    Algebraic Geometry
    • 4,508