On Friedrichs Constant and Horgan-payne Angle for Lbb Condition

  title={On Friedrichs Constant and Horgan-payne Angle for Lbb Condition},
  author={Monique Dauge and Christine Bernardi and Martin Costabel and Vivette Girault},
Abstract. In dimension 2, the Horgan-Payne angle serves to construct a lower bound for the inf-sup constant of the divergence arising in the so-called LBB condition. This lower bound is equivalent to an upper bound for the Friedrichs constant. Explicit upper bounds for the latter constant can be found using a polar parametrization of the boundary. Revisiting carefully the original paper which establishes this strategy, we found out that some proofs need clarification, and some statements… CONTINUE READING
2 Citations
15 References
Similar Papers


Publications referenced by this paper.
Showing 1-10 of 15 references

On inequalities of Korn, Friedrichs and Babuška- Aziz

  • C. O. Horgan, L. E. Payne
  • Arch. Rational Mech. Anal. 82,
  • 1983
Highly Influential
8 Excerpts

Sobolev spaces with applications to elliptic partial differential equations, augmented ed., vol. 342 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences

  • V. Maz’ya
  • Available from: http://dx.doi.org/10.1007/978-3…
  • 2011

An introduction to Navier-Stokes equation and oceanography

  • L. Tartar
  • Unione Matematica Italiana. Springer-Verlag…
  • 2006

Solutions of the divergence operator on

  • G. Acosta, R. G. Durán, M. A. andMuschietti
  • John domains. Adv. Math. 206,
  • 2006
1 Excerpt

Solutions of the divergence operator on John domains

  • G. A costa, R. G. D urán, M. A. M uschietti
  • Adv . Math .
  • 2006

On the LBB condition in the numerical analysis of the Stokes equations

  • M. Dobrowolski
  • Appl. Numer. Math. 54,
  • 2005
1 Excerpt

Towards discrete Velte decompositions and narrow bounds for infsup constants

  • G. Stoyan
  • Comput. Math. Appl
  • 1999
1 Excerpt

Inequalities of Korn and Friedrichs in elasticity and potential theory

  • C. O. Horgan
  • Z. Angew. Math. Phys
  • 1975
1 Excerpt

Similar Papers

Loading similar papers…