Corpus ID: 218719823

On Dru\.zkowski's morphisms of cubic linear type

@article{McKean2020OnDM,
  title={On Dru\.zkowski's morphisms of cubic linear type},
  author={S. McKean},
  journal={arXiv: Commutative Algebra},
  year={2020}
}
  • S. McKean
  • Published 2020
  • Mathematics
  • arXiv: Commutative Algebra
  • We use theorems of Muller-Quade and Steinwandt, Scheja and Storch, and van der Waerden to study Druzkowski's morphisms of cubic linear type with invertible Jacobian. In particular, we compare the degree of such morphisms with the dimensions of various related vector spaces. These comparisons result in an inequality that, if true, would show that morphisms of cubic linear type with invertible Jacobian are injective, finite, and induce an equality of function fields. 

    References

    SHOWING 1-10 OF 12 REFERENCES
    Gröbner Bases Applied to Finitely Generated Field Extensions
    • 12
    • PDF
    The Jacobian conjecture: Reduction of degree and formal expansion of the inverse
    • 683
    • Highly Influential
    • PDF
    Éléments de géométrie algébrique
    • 4,160
    • PDF
    Journal für die reine und angewandte Mathematik
    • 466
    • PDF
    96(1):183–208
    • Dec
    • 1927
    The Stacks project
    • https://stacks.math.columbia.edu,
    • 2019
    The Stacks project authors. The Stacks project
    • 2019
    Basic Algebraic Geometry
    • 320
    Journal of Symbolic Computation
    • 30(4):469 – 490,
    • 2000