On Dejean's conjecture over large alphabets

@article{Carpi2007OnDC,
  title={On Dejean's conjecture over large alphabets},
  author={Arturo Carpi},
  journal={Theor. Comput. Sci.},
  year={2007},
  volume={385},
  pages={137-151}
}
The (maximal) exponent of a non-empty finite word is the ratio of its length to its period. Dejean (1972) conjectured that for any n ≥ 5 there exists an infinite word over n letters with no factor of its exponent larger than n/(n − 1). We prove that this conjecture is true for n ≥ 33. c © 2007 Elsevier B.V. All rights reserved. 

From This Paper

Figures, tables, and topics from this paper.

Explore Further: Topics Discussed in This Paper

References

Publications referenced by this paper.
Showing 1-10 of 16 references

A propos d'une conjecture de F. Dejean sur les répétitions dans les mots

Discrete Applied Mathematics • 1984
View 4 Excerpts
Highly Influenced

Sur un Théorème de Thue

J. Comb. Theory, Ser. A • 1972
View 3 Excerpts
Highly Influenced

Thue , Uber unendliche Zeichenreihen , Norske Vid . Selsk . Skr . I . Mat . Nat . Kl . Christiania 7 ( 1906 ) 1 – 22

T. Nagell
J . Found . Comput . Sci . • 2004

Combinatorics on words: a tutorial

Bulletin of the EATCS • 2003
View 1 Excerpt

Similar Papers

Loading similar papers…