On Certain Subclasses of Analytic Functions Defined by a Multiplier Transformation with Two Parameters

@inproceedings{AlShaqsi2009OnCS,
  title={On Certain Subclasses of Analytic Functions Defined by a Multiplier Transformation with Two Parameters},
  author={K. Al-Shaqsi and Maslina Darus},
  year={2009}
}
Let A denote the class of analytic functions with the normalization f(0) = f ′(0) − 1 = 0 in the open unit disk U = {z : |z| < 1}, set f b,λ(z) = z + ∞ ∑ k=2 (k + b 1 + b )n (k + λ − 1)! λ!(k − 1)! z k (n ∈ C, b ∈ C \ Z−, λ > −1; z ∈ U). and define (fn b,λ) (−1) in terms of the Hadamard product f b,λ(z) ∗ (f b,λ)(z) = z (1 − z)μ (μ > 0; z ∈ U). In this paper, the authors introduce several new subclasses of analytic functions defined by means of the operator In b,λ,μ : A → A, given by I b,λ,μf(z… CONTINUE READING

From This Paper

Figures, tables, results, connections, and topics extracted from this paper.
3 Extracted Citations
12 Extracted References
Similar Papers

Referenced Papers

Publications referenced by this paper.
Showing 1-10 of 12 references

Some inclusion properties of a certain family of integral operators

  • J. H. Choi, M. Saigo, H. M. Srivastava
  • J. Math. Anal. Appl
  • 2002
3 Excerpts

The Noor integral and strongly starlike functions

  • J. -L. Liu
  • J. Math. Anal. Appl
  • 2001
2 Excerpts

Coefficient bounds and convolution properties for certain classes of close-to-convex functions

  • Y. C. Kim, J. H. Choi, T. Sugawa
  • Proc. Japan Acad. Set. A Math. Sci
  • 2000
1 Excerpt

On new classes of integral operators

  • K. I. Noor
  • J. Natur. Geom
  • 1999
3 Excerpts

An internal geometric characterization of strongly starlike functions

  • D. Minda
  • Ann . Univ . Mariae CurieSklodowska Sect . A
  • 1991

An internal geometric characterization of strongly starlike functions, Ann

  • W. C. Ma, D. Minda
  • Univ. Mariae Curie-Sklodowska Sect. A
  • 1991
2 Excerpts

Reade, On a Briot- Bouquet differential subordination

  • P. Eenigenburg, S. S. Miller, M.O.P.T. Mocanu
  • General Inequal
  • 1983
1 Excerpt

Similar Papers

Loading similar papers…