Highly Influenced

# On Bilinear Littlewood-paley Square Functions

@inproceedings{Lacey2000OnBL, title={On Bilinear Littlewood-paley Square Functions}, author={Michael T. Lacey}, year={2000} }

- Published 2000

On the real line, let the Fourier transform of kn be k̂n(ξ) = k̂(ξ−n) where k̂(ξ) is a smooth compactly supported function. Consider the bilinear operators Sn(f, g)(x) = ∫ f(x + y)g(x − y)kn(y) dy. If 2 ≤ p, q ≤ ∞, with 1/p + 1/q = 1/2, I prove that ∞ ∑ n=−∞ ‖Sn(f, g)‖2 ≤ C‖f‖p‖g‖q . The constant C depends only upon k.