On Bilinear Littlewood-paley Square Functions

@inproceedings{Lacey2000OnBL,
  title={On Bilinear Littlewood-paley Square Functions},
  author={Michael T. Lacey},
  year={2000}
}
On the real line, let the Fourier transform of kn be k̂n(ξ) = k̂(ξ−n) where k̂(ξ) is a smooth compactly supported function. Consider the bilinear operators Sn(f, g)(x) = ∫ f(x + y)g(x − y)kn(y) dy. If 2 ≤ p, q ≤ ∞, with 1/p + 1/q = 1/2, I prove that ∞ ∑ n=−∞ ‖Sn(f, g)‖2 ≤ C‖f‖p‖g‖q . The constant C depends only upon k. 

From This Paper

Topics from this paper.

References

Publications referenced by this paper.
Showing 1-3 of 3 references

A Littlewood-Paley inequality for arbitrary intervals

  • J. L. Rubio de Francia
  • Rev. Mat. Iberoamericana
  • 1985

On the Littlewood-Paley Theorem, Inst. MittagLeffler

  • L. Carleson
  • 1967

Similar Papers

Loading similar papers…