On Arithmetic Progressions on Edwards Curves

@inproceedings{Gonzlez2013OnAP,
  title={On Arithmetic Progressions on Edwards Curves},
  author={Enrique Gonz{\'a}lez},
  year={2013}
}
Let be m ∈ Z>0 and a, q ∈ Q. Denote by APm(a, q) the set of rational numbers d such that a, a + q, . . . , a + (m − 1)q form an arithmetic progression in the Edwards curve Ed : x2 +y2 = 1+d x2y2. We study the set APm(a, q) and we parametrize it by the rational points of an algebraic curve. 

From This Paper

Figures, tables, and topics from this paper.

References

Publications referenced by this paper.
Showing 1-10 of 22 references

editors

  • W. Bosma, J. Cannon, C. Fieker, A. Steel
  • Handbook of Magma functions, Edition 2.19. http…
  • 2012
3 Excerpts

Arithmetic progressions in the y–coordinates on certain elliptic curves

  • A. Alvarado
  • F. Luca and P. Stanica, editors, Aportaciones…
  • 2011
1 Excerpt

Arithmetic progressions on congruent number elliptic curves

  • B. K. Spearman
  • Rocky Mountain J. Math., 41(6):2033–2044
  • 2011
1 Excerpt

Simultaneous arithmetic progressions on algebraic curves

  • J. Solymosi, F. de Zeeuw
  • Ann . Math . Inform .
  • 2011

and F

  • R. Schwartz, J. Solymosi
  • de Zeeuw. Simultaneous arithmetic progressions on…
  • 2011
1 Excerpt

Arithmetic progressions on quartic elliptic curves

  • A. Alvarado
  • Ann. Math. Inform., 37:3–6
  • 2010
1 Excerpt

14-term arithmetic progressions on quartic elliptic curves

  • A. J. MacLeod
  • J. Integer Seq., 9(1):Article 06.1.2, 4 pp…
  • 2006
1 Excerpt

Similar Papers

Loading similar papers…