# On $p$-integrality of instanton numbers

@inproceedings{Beukers2021OnO, title={On \$p\$-integrality of instanton numbers}, author={Frits Beukers and Masha Vlasenko}, year={2021} }

The motivation for this paper comes from the striking work [7] of Candelas, de la Ossa, Green and Parkes in the study of mirror symmetry of quintic threefolds from 1991. The story has been told many times, so we will give only a very brief description. For more details we like to refer to Duco van Straten’s excellent [18] and the many references therein. Our short story starts with the differential operator L = θ − 5t(5θ + 1)(5θ + 2)(5θ + 3)(5θ + 4), where θ denotes t d dt . The unique… Expand

#### References

SHOWING 1-10 OF 20 REFERENCES

Ordinary Calabi-Yau-3 Crystals

- Mathematics, Physics
- 2002

We show that crystals with the properties of crystalline cohomology
of ordinary Calabi-Yau threefolds in characteristic p > 0,
exhibit a remarkable similarity with the well known structure on the … Expand

Integrality of instanton numbers and p-adic B-model

- Physics, Mathematics
- 2006

Abstract We study integrality of instanton numbers (genus zero Gopakumar–Vafa invariants) for quintic and other Calabi–Yau manifolds. We start with the analysis of the case when the moduli space of… Expand

Enumerative Geometry of Calabi-Yau 4-Folds

- Mathematics, Physics
- 2008

Gromov-Witten theory is used to define an enumerative geometry of curves in Calabi-Yau 4-folds. The main technique is to find exact solutions to moving multiple cover integrals. The resulting… Expand

An exactly soluble superconformal theory from a mirror pair of Calabi-Yau manifolds☆

- Physics
- 1991

Abstract We compute the prepotentials and the geometry of the moduli spaces for a Calabi-Yau manifold and its mirror. In this way we obtain all the sigma model corrections to the Yukawa couplings and… Expand

Homological Geometry and Mirror Symmetry

- Computer Science
- 1995

A homogeneous polynomial equation in five variables determines a quintic 3-fp;d in ℂP4. Hodge numbers of a nonsingular quintic are know to be: h p, p = 1, p = 0, 1, 2, 3 (Kahler form and its powers),… Expand

On Dwork's p-adic formal congruences theorem and hypergeometric mirror maps

- Mathematics
- 2013

Using Dwork's theory, we prove a broad generalisation of his famous p-adic formal congruences theorem. This enables us to prove certain p-adic congruences for the generalized hypergeometric series… Expand

Dwork crystals III

- Mathematics
- 2021

We recall the main points of our earlier papers [2] and [3] titled Dwork crystals I and II. In this paper we shall refer to them as Part I and Part II. Let p be an odd prime and R a p-adic ring. By… Expand

The Gopakumar-Vafa formula for symplectic manifolds

- Mathematics
- 2013

The Gopakumar-Vafa conjecture predicts that the Gromov-Witten invariants of a Calabi-Yau 3-fold can be canonically expressed in terms of integer invariants called BPS numbers. Using the methods of… Expand

On generalized hypergeometric equations and mirror maps

- Mathematics
- 2014

This paper deals with generalized hypergeometric differential equations of order n ≥ 3 having maximal unipotent monodromy at 0. We show that among these equations those leading to mirror maps with… Expand

On the integrality of the Taylor coefficients of mirror maps

- Mathematics, Physics
- 2009

We show that the Taylor coefficients of the series ${\bf q}(z)=z\exp({\bf G}(z)/{\bf F}(z))$ are integers, where ${\bf F}(z)$ and ${\bf G}(z)+\log(z) {\bf F}(z)$ are specific solutions of certain… Expand