# On $L^2$ extension from singular hypersurfaces

@inproceedings{Kim2021OnE, title={On \$L^2\$ extension from singular hypersurfaces}, author={Dano Kim and Hoseob Seo}, year={2021} }

In L extension theorems from a singular hypersurface in a complex manifold, some important roles are played by certain measures such as the Ohsawa measure which determine when a given function can be extended. In this paper, we show that the singularity of the Ohsawa measure can be identified in terms of algebraic geometry. Using this, we give an analytic proof of the inversion of adjunction in this setting. Then these considerations enable us to compare various positive and negative results on…

## 2 Citations

### On a question of Koll\'{a}r

- Mathematics
- 2022

In this note, we establish a generalized analytic inversion of adjunction via the Nadel-Ohsawa multiplier/adjoint ideal sheaves associated to plurisubharmonic (psh) functions for log pairs, by which…

### A new definition of analytic adjoint ideal sheaves via the residue functions of log-canonical measures I

- Mathematics
- 2021

. A new deﬁnition of analytic adjoint ideal sheaves for quasi-plurisubharmonic (quasi-psh) functions with only neat analytic singularities is studied and shown to admit some residue short exact…

## References

SHOWING 1-10 OF 50 REFERENCES

### Extension of holomorphic functions defined on singular complex hypersurfaces with growth estimates in strictly pseudoconvex domains of $\mathbb{C}^n$

- Mathematics
- 2015

Let D be a strictly convex domain and X be a singular complex
hypersurface in Cn such that X \ D 6= ; and X \ bD is transverse. We first give
necessary conditions for a function holomorphic on D\X…

### Analytic inversion of adjunction: L^2 extension theorems with gain

- Mathematics
- 2006

We establish new results on weighted $L^2$ extension of holomorphic top forms with values in a holomorphic line bundle, from a smooth hypersurface cut out by a holomorphic function. The weights we…

### Extension of L^2 holomorphic functions

- Mathematics
- 2015

The purpose of this note is to show that the di-bar-estimate which is needed in the Ohsawa-Takegoshi Extension Theorem [6] is a direct consequence of the Hormander-Kohn-Morrey weigthed inequality. In…

### Adjoint ideals along closed subvarieties of higher codimension

- Mathematics
- 2007

Abstract In this paper, we introduce a notion of adjoint ideal sheaves along closed subvarieties of higher codimension and study its local properties using characteristic p methods. When X is a…

### Toric plurisubharmonic functions and analytic adjoint ideal sheaves

- Mathematics
- 2010

In the first part of this paper, we study the properties of some particular plurisubharmonic functions, namely the toric ones. The main result of this part is a precise description of their…

### A solution of an $L^{2}$ extension problem with optimal estimate and applications

- Mathematics
- 2013

In this paper, we prove an $L^2$ extension theorem with optimal estimate in a precise way, which implies optimal estimate versions of various well-known $L^2$ extension theorems. As applications, we…

### A remark on the theorem of Ohsawa-Takegoshi

- MathematicsNagoya Mathematical Journal
- 2000

If D ⊂ ℂ n is a pseudoconvex domain and X ⊂ D a closed analytic subset, the famous theorem B of Cartan-Serre asserts, that the restriction operator r : (D) → (X) mapping each function F to its…

### Invariance of plurigenera

- Mathematics
- 1998

In this paper we give a proof of the following long conjectured result on the invariance of the plurigenera. Main Theorem. Let p : X ! D be a smooth projective family of compact complex manifolds…

### Birational Geometry of Algebraic Varieties

- Mathematics
- 2010

Needless to say, tlie prototype of classification theory of varieties is tlie classical classification theory of algebraic surfaces by the Italian school, enriched by Zariski, Kodaira and others. Let…

### $L^2$ extension of holomorphic functions for log canonical pairs

- Mathematics
- 2021

. In a general L 2 extension theorem of Demailly for log canonical pairs, the L 2 criterion with respect to a measure called the Ohsawa measure determines when a given holomorphic function can be…