# Odd order cases of the logarithmically averaged Chowla conjecture

@article{Tao2017OddOC, title={Odd order cases of the logarithmically averaged Chowla conjecture}, author={Terence Tao and Joni Teravainen}, journal={Journal de Theorie des Nombres de Bordeaux}, year={2017}, volume={30}, pages={997-1015} }

A famous conjecture of Chowla states that the Liouville function $\lambda(n)$ has negligible correlations with its shifts. Recently, the authors established a weak form of the logarithmically averaged Elliott conjecture on correlations of multiplicative functions, which in turn implied all the odd order cases of the logarithmically averaged Chowla conjecture. In this note, we give a new and shorter proof of the odd order cases of the logarithmically averaged Chowla conjecture. In particular…

## 25 Citations

Siegel Zeros and Sarnak's Conjecture

- Mathematics
- 2021

Abstract. Assuming the existence of Siegel zeros, we prove that there exists an increasing sequence of positive integers for which Chowla’s Conjecture on k-point correlations of the Liouville…

The Hardy--Littlewood--Chowla conjecture in the presence of a Siegel zero

- Mathematics
- 2021

Assuming that Siegel zeros exist, we prove a hybrid version of the Chowla and Hardy–Littlewood prime tuples conjectures. Thus, for an infinite sequence of natural numbers x, and any distinct integers…

Polynomial mean complexity and Logarithmic Sarnak conjecture

- Mathematics
- 2020

In this paper, we reduce the logarithmic Sarnak conjecture to the $\{0,1\}$-symbolic systems with polynomial mean complexity. By showing that the logarithmic Sarnak conjecture holds for any…

On binary correlations of multiplicative functions

- Mathematics
- 2017

We study logarithmically averaged binary correlations of bounded multiplicative functions g1 and g2. A breakthrough on these correlations was made by Tao, who showed that the correlation average is…

Sarnak’s conjecture for sequences of almost quadratic word growth

- MathematicsErgodic Theory and Dynamical Systems
- 2020

Abstract We prove the logarithmic Sarnak conjecture for sequences of subquadratic word growth. In particular, we show that the Liouville function has at least quadratically many sign patterns. We…

Quantitative bounds for Gowers uniformity of the M\"obius and von Mangoldt functions

- Mathematics
- 2021

We establish quantitative bounds on the U[N ] Gowers norms of the Möbius function μ and the von Mangoldt function Λ for all k, with error terms of shapeO((log logN)−c). As a consequence, we obtain…

D S ] 4 S ep 2 02 0 POLYNOMIAL MEAN COMPLEXITY AND LOGARITHMIC SARNAK CONJECTURE

- Mathematics
- 2020

In this paper, we reduce the logarithmic Sarnak conjecture to the {0, 1}symbolic systems with polynomial mean complexity. By showing that the logarithmic Sarnak conjecture holds for any topologically…

On the random Chowla conjecture

- Mathematics
- 2022

We show that for a Steinhaus random multiplicative function f : N → D and any polynomial P (x) ∈ Z[x] of degP ≥ 2 which is not of the form w(x+ c) for some w ∈ Z, c ∈ Q, we have 1 √ x ∑ n≤x f(P (n))…

ON BINARY CORRELATIONS OF MULTIPLICATIVE FUNCTIONS

- MathematicsForum of Mathematics, Sigma
- 2018

We study logarithmically averaged binary correlations of bounded multiplicative functions $g_{1}$ and $g_{2}$ . A breakthrough on these correlations was made by Tao, who showed that the correlation…

Gowers norms control diophantine inequalities

- Mathematics
- 2017

A central tool in the study of systems of linear equations with integer coefficients is the Generalised von Neumann Theorem of Green and Tao. This theorem reduces the task of counting the weighted…

## References

SHOWING 1-10 OF 26 REFERENCES

An averaged Chowla and Elliott conjecture along independent polynomials

- Mathematics
- 2016

We generalize a result of Matomaki, Radziwill, and Tao, by proving an averaged version of a conjecture of Chowla and a conjecture of Elliott regarding correlations of the Liouville function, or more…

Ergodicity of the Liouville system implies the Chowla conjecture

- Mathematics
- 2016

The Chowla conjecture asserts that the values of the Liouville function form a normal sequence of plus and minus ones. Reinterpreted in the language of ergodic theory it asserts that the Liouville…

The logarithmic Sarnak conjecture for ergodic weights

- Mathematics
- 2017

The M\"obius disjointness conjecture of Sarnak states that the M\"obius function does not correlate with any bounded sequence of complex numbers arising from a topological dynamical system with zero…

An averaged form of Chowla's conjecture

- Mathematics
- 2015

Let $\lambda$ denote the Liouville function. A well known conjecture of Chowla asserts that for any distinct natural numbers $h_1,\dots,h_k$, one has $\sum_{1 \leq n \leq X} \lambda(n+h_1) \dotsm…

AN INVERSE THEOREM FOR THE GOWERS U4-NORM

- MathematicsGlasgow Mathematical Journal
- 2010

Abstract We prove the so-called inverse conjecture for the Gowers Us+1-norm in the case s = 3 (the cases s < 3 being established in previous literature). That is, we show that if f : [N] → ℂ is a…

Linear equations in primes

- Mathematics
- 2006

Consider a system ψ of nonconstant affine-linear forms ψ 1 , ... , ψ t : ℤ d → ℤ, no two of which are linearly dependent. Let N be a large integer, and let K ⊆ [-N, N] d be convex. A generalisation…

Additive combinatorics

- MathematicsCambridge studies in advanced mathematics
- 2007

The circle method is introduced, which is a nice application of Fourier analytic techniques to additive problems and its other applications: Vinogradov without GRH, partitions, Waring’s problem.

Multiplicative functions in short intervals

- Mathematics
- 2015

We introduce a general result relating "short averages" of a multiplicative function to "long averages" which are well understood. This result has several consequences. First, for the M\"obius…

Multiple recurrence and convergence for sequences related to the prime numbers

- Mathematics
- 2006

For any measure preserving system (X, , μ,T) and A ∈ with μ(A) > 0, we show that there exist infinitely many primes p such that (the same holds with p − 1 replaced by p + 1). Furthermore, we show the…

Nilsequences and multiple correlations along subsequences

- MathematicsErgodic Theory and Dynamical Systems
- 2020

The results of Bergelson, Host and Kra, and Leibman state that a multiple polynomial correlation sequence can be decomposed into a sum of a nilsequence (a sequence defined by evaluating a continuous…