OPTIMIZING PARAMETERS OF MACHINE LEARNING ALGORITHMS

@inproceedings{Koblar2012OPTIMIZINGPO,
  title={OPTIMIZING PARAMETERS OF MACHINE LEARNING ALGORITHMS},
  author={Valentin Koblar},
  year={2012}
}
Machine learning algorithms require setting of parameters for achieving highquality results. Manual parameter setting and searching for optimal parameter values based on learning and experience can be very time-consuming. Using optimization algorithms, we can get good parameter settings and save time. In our research, we used the multiobjective optimization algorithm called DEMO to optimize the parameters of a machine learning algorithm. DEMO is an extension of differential evolution which is a… CONTINUE READING

Citations

Publications citing this paper.
SHOWING 1-4 OF 4 CITATIONS

References

Publications referenced by this paper.
SHOWING 1-10 OF 16 REFERENCES

Razvoj algoritma za večkriterijsko optimiranje z diferencialno evolucijo, Magistrska naloga, Ljubljana: Univerza v Ljubljani

T. Tušar
  • Fakulteta za računalništvo in informatiko,
  • 2007
VIEW 4 EXCERPTS
HIGHLY INFLUENTIAL

Ocenjevanje kakovosti grafitnih polizdelkov z računalniškim vidom in s strojnim učenjem, Magistrsko delo, Nova Gorica

V. Koblar
  • Univerza v Novi Gorici, Poslovno-tehniška fakulteta,
  • 2010
VIEW 2 EXCERPTS

Optimizacija klasifikacijske točnosti in velikosti odločitvenih dreves za napovedovanje kakovosti grafitnih polizdelkov, Devetnajsta elektrotehniška in računalniška konferenca (ERK

M. Mlakar, V. Koblar, B. Filipič
  • Portorož,
  • 2010
VIEW 2 EXCERPTS

Multi-Objective Evolutionary Algorithms for Knowledge Discovery from Databases

  • Multi-Objective Evolutionary Algorithms for Knowledge Discovery from Databases
  • 2008
VIEW 1 EXCERPT

Tuning Artificial Neural Networks Parameters Using an Evolutionary Algorithm

  • 2008 Eighth International Conference on Hybrid Intelligent Systems
  • 2008
VIEW 2 EXCERPTS