ON THE NUMBER OF DIVISORS OF $n^{2}-1$
@article{Dudek2015ONTN, title={ON THE NUMBER OF DIVISORS OF \$n^\{2\}-1\$}, author={A. Dudek}, journal={Bulletin of the Australian Mathematical Society}, year={2015}, volume={93}, pages={194 - 198} }
We prove an asymptotic formula for the sum $\sum _{n\leq N}d(n^{2}-1)$, where $d(n)$ denotes the number of divisors of $n$. During the course of our proof, we also furnish an asymptotic formula for the sum $\sum _{d\leq N}g(d)$, where $g(d)$ denotes the number of solutions $x$ in $\mathbb{Z}_{d}$ to the equation $x^{2}\equiv 1~(\text{mod}~d)$.
8 Citations
Explicit upper bound for an average number of divisors of quadratic polynomials
- Mathematics
- 2015
- 6
- Highly Influenced
- PDF
NOTE ON THE NUMBER OF DIVISORS OF REDUCIBLE QUADRATIC POLYNOMIALS
- Mathematics
- Bulletin of the Australian Mathematical Society
- 2018
- 1
- PDF
Explicit upper bound for the average number of divisors of irreducible quadratic polynomials
- Mathematics, Medicine
- Monatshefte fur Mathematik
- 2018
- 7
- PDF
References
SHOWING 1-10 OF 17 REFERENCES