# ON THE NUMBER OF DIVISORS OF $n^{2}-1$

@article{Dudek2015ONTN,
title={ON THE NUMBER OF DIVISORS OF \$n^\{2\}-1\$},
journal={Bulletin of the Australian Mathematical Society},
year={2015},
volume={93},
pages={194 - 198}
}
• Published 30 July 2015
• Mathematics
• Bulletin of the Australian Mathematical Society
We prove an asymptotic formula for the sum $\sum _{n\leq N}d(n^{2}-1)$, where $d(n)$ denotes the number of divisors of $n$. During the course of our proof, we also furnish an asymptotic formula for the sum $\sum _{d\leq N}g(d)$, where $g(d)$ denotes the number of solutions $x$ in $\mathbb{Z}_{d}$ to the equation $x^{2}\equiv 1~(\text{mod}~d)$.
8 Citations
Explicit upper bound for an average number of divisors of quadratic polynomials
AbstractConsider the divisor sum $${\sum_{n\leq N} \tau(n^2+2bn+c)}$$∑n≤Nτ(n2+2bn+c) for integers b and c which satisfy certain extra conditions. For this average sum, we obtain an explicit upper
NOTE ON THE NUMBER OF DIVISORS OF REDUCIBLE QUADRATIC POLYNOMIALS
• Mathematics
Bulletin of the Australian Mathematical Society
• 2018
Lapkova [‘On the average number of divisors of reducible quadratic polynomials’, J. Number Theory 180 (2017), 710–729] uses a Tauberian theorem to derive an asymptotic formula for the divisor sum
Explicit upper bound for the average number of divisors of irreducible quadratic polynomials
An asymptotic formula for the average divisor sum is extracted in a convenient form, and an explicit upper bound for this sum with the correct main term is provided.
A remark on the average number of divisors of a quadratic polynomial
In recent work, we use Dudek’s method together with a result of Zagier to establish an asymptotic formula for the average number of divisors of an irreducible quadratic polynomial of the form
Revisiting the average number of divisors of a quadratic polynomial
This work employs a well known result due to Zagier to derive an asymptotic formula for the average number of divisors of a quadratic polynomial of the form x 2 - b x + c with b, c integers to compute several examples of the weighted class number.
An upper bound for the number of Diophantine quintuples
• Mathematics
• 2016
In this paper we improve the known upper bound for the number of D(4)-quintuples by using the most recent methods that were developed in D(1) case. More precisely, we prove that there are at most
A wishlist for Diophantine quintuples (Analytic Number Theory and Related Areas)
We are concerned with Diophantine quintuples, that is, sets \{a, b, c, d, e\} of distinct positive integers the product of any two of which is one less than a perfect square. We present some recent