Corpus ID: 17219120

ON A SUBCLASS OF HARMONIC UNIVALENT FUNCTIONS

@inproceedings{Dixit2008ONAS,
  title={ON A SUBCLASS OF HARMONIC UNIVALENT FUNCTIONS},
  author={K. K. Dixit},
  year={2008}
}
The class of univalent harmonic functions on the unit disc satisfying the condition ∑∞ k=2 (k m − αk)(|ak|+ |bk|) ≤ (1−α)(1−|b1|) is given. Sharp coefficient relations and distortion theorems are given for these functions. In this paper we find that many results of Özturk and Yalcin [5] are incorrect. Some of the results of this paper correct the theorems and examples of [5]. Further, sharp coefficient relations and distortion theorems are given. Results concerning the convolutions of functions… Expand
Starlike Functions of Complex Order
...
1
2
3
...

References

SHOWING 1-10 OF 13 REFERENCES
ON UNIVALENT HARMONIC FUNCTIONS
Neighborhoods of univalent functions
Neighborhoods of a class of analytic functions with negative coefficients
RUSCHEWEYH , Neighborhoods of univalent functions
  • J . Inequal . in Pure and Appl . Math .
  • 2002
Harmonic mappings with a positive real part
  • Materialy XIV Konferencji z Teorii Zagadnien Ekstremalnych Lodz
  • 1993
W
  • MAJCHRZAKAND K. SKALSKA, Harmonic mappings with a positive real part,Materialy XIV Konferencji z Teorii Zagadnien Ekstremalnych Lodz ,
  • 1993
YALCIN , On univalent harmonic functions
  • Materialy XIV Konferencji z Teorii Zagadnien Ekstremalnych Lodz
  • 1993
On harmonic univalent mappings
  • On harmonic univalent mappings
  • 1990
ZLOTKIEWICZ , On harmonic univalent mappings
  • 1990
CLUNIE AND T SHEILSMALL , Harmonic univalent functions
  • Ann . Acad . Sci . Fen . Series A . I , Math .
  • 1984
...
1
2
...